Physics Performance at CEPC

CEPC Workshop 2020 Dan YU

Institute of High Energy Physics Chinese Academy of Sciences

Introduction to CEPC

CEPC CDR (released 2018): arxiv:18

- Higgs factory: 240 GeV, 10⁶ Higgs,
 - Advantage: Clean, Known initial states
 - Measurements: Higgs boson mass.

CEPC Detector Baseline

 PFA Oriented concept using High Granularity Calorimeter + TPC (Option: full silicon tracker)

Alternative: Innovative Detector for Electron-positron Accelerator (IDEA)

CEPC Full Simulation

4

- Software chain
- CDR Samples:
 - Full simulated Higgs signal
 - small cross-section(<20 fb): simulated to a minimal statistic of 100k
 - 4 fermion background Full simulated
 - 2 fermion background: 20% simulated

PFA - Objects

ZH final states: (ll,νν,qq)×(γγ,ZZ/WW,ll,νν,qq/gg)
 Make all the possible measurement in different channel and combine the result

5

Lepton ID: Isolate Leptons

- LICH uses TMVA methods to summarize 24 input variables into two likelihoods, corresponding to electrons and muons.
- The efficiency for electron and muon is higher than 99.5% (E>2 GeV). Pion efficiency ~ 98%.

CEPCWS2020

7

CEPCWS2020

7

Lepton in jets

- The performance for lepton in jets degrades comparing to the single particle results
- * Further: more flavor physics such as lepton flavor universality, etc.

8

Clustering Performance

Use clustering

efficiency (correct collected hits/particle hits)
purity (correct collected hits/cluster hits)
to characterize clustering performance

9

Clustering Performance

Electron(En<3GeV)

✤ Higher energy, better clustering performance

Electron(3GeV<En<8GeV)

.10.6

0.4

02

₹0.6

0.4

0.2

0.2

0.4

10⁴

10³

10²

10

0.8

0.6

Muon(3GeV<En<8GeV)

Electron(En>8GeV)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ratio(%)		<3GeV	3-8GeV	>8GeV	
	e	1	71.06	65.16	50.85	
		<0.9	18.87	9.84	6.64	
	μ	1	54.55	81.68	82.53	
		<0.9	31.45	5.75	3.55	
	Π	1	52.84	24.75	13.45	
		<0.9	26.77	32.68	30.52	

Muon(En<3GeV)

1

0.2 0.4 0.6 0.8

Muon(En>8GeV)

Pion(En>8GeV)

CEPCWS2020

0.2 0.4 0.6 0.8

Clustering vs PID

✤ Electrons:

- low energy: dE/dx dominate
- clusters are compact, the splitting clusters still electron-like

* Muon:

- cluster is not MIP-like if mixed with other hits
- muon likeliness is lost when the muon cluster splits into small pieces

* Pion:

- likely to be a EM cluster with some branches
- more likely to be mis-identified as an electron for lower clustering efficiency

10⁻¹

10-2

10⁻³

10-4

10⁻⁵

10⁻⁶

10-7

10⁻⁸

10⁻¹

10-2

10⁻³

10-4

10⁻⁵

10⁻⁶

10⁻⁷

10⁻⁸

10-1

10-2

10⁻³

10-4

10⁻⁵

 10^{-6}

10-7

10⁻⁸

CEPCWS2020

12

Comparison

 Comparison of lepton identification performance for perfect clusters and the performance of single particle

Taurus

14

- Double cone based algorithm
 - Use the multiplicity, energy ratio between two cones, invariant mass for τ tagging
- $H \rightarrow \tau \tau$ has been analyzed

1

π0 Reconstruction in Physics Events

* $\pi 0$ important in τ , flavor, energy reconstruction...

* Energy distribution of photon decayed from $\pi 0$

$\pi 0$ Reconstruction - FastSim

by Yuexin Wang

- Fast simulation analysis has been done to investigate the potential
- Perfect separation

16

π0 Reconstruction Rate

by Yuqiao Shen

- * The probability of successfully reconstructing $\pi 0$ in the barrel region and in the endcap region
- * In the barrel region, 50% can be reconstructed when $\pi 0$ energy lower than 22 GeV.
- * In the endcap region, 50% can be reconstructed when $\pi 0$ energy lower than 34 GeV.
- The lower energy degrading caused by photon identification and reconstruction.
- * Most within the region with above 50% reconstruction rate

17

Jet Performance

 Jet performance: boson invariant mass resolution, jet energy and angular differential response, number of jets identification

Detector Optimization

- BMR used for detector optimization
 - current: 3.7%
 - requirement: 4%
- Parameters for optimization: TPC size, B field, Ecal, Hcal, Solinoid, Detector acceptance

19

B Field

by Dan YU

- * B Field influence the separation of particles
- ✤ degrades by 13.16% at 0.6T
- ✤ 4% BMR: at least 1.5T

TPC Size

by Hanhua Cui

Ratio R/Z fixed (already optimized)

* BMR degrades 20% when the radius of TPC reduces to 1200mm

22

Detector Acceptance

by Jeichen Jiang

Acceptance limits the performance

Mute hits above acceptance

Jet Energy Resolution & Jet Energy Scale by Pei-Zhu Lai * The difference between 2 and 4 jets final-state is controlled within 1% level (240 GeV (240 GeV) 0.08 CEPC CEPC **Δ WW** \rightarrow μν**q** $\overline{\mathbf{q}}$ Δ WW \rightarrow **q** $\overline{\mathbf{q}}$ $\overline{\mathbf{q}}$ WW $\rightarrow \mu \nu q \overline{q} \land WW \rightarrow q \overline{q} q \overline{q}$ 0.08 $ZZ \rightarrow v\overline{v}q\overline{q} \bigcirc ZZ \rightarrow q\overline{q}q\overline{q}$ $ZZ \rightarrow v\overline{v}q\overline{q} \bigcirc ZZ \rightarrow q\overline{q}q\overline{q}$ $ZZ \rightarrow v\overline{v}q\overline{q} \bigcirc ZZ \rightarrow q\overline{q}q\overline{q}$ $ZH \rightarrow vvq\overline{q} \Box ZH \rightarrow q\overline{q}q\overline{q}$ **ZH** $\rightarrow vvq\overline{q}$ \Box ZH $\rightarrow q\overline{q}q\overline{q}$ ZH →vvqq □ ZH →qqqq Jet Energy Resolution Energy Resolution Energy Resolution 0.07 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.05 ē ē 0.04 0.04 0.04 COStica 0.03 0.03 0.03 20 30 40 50 60 70 80 90 100 0.5 $\cos\theta_{Gen}$ ⊨_{Gen} (GeV) CEPC ▲ WW→μνqq △ WW→qqqq CEPC **A** WW $\rightarrow \mu \nu q \overline{q} \bigtriangleup$ WW $\rightarrow q \overline{q} q \overline{q}$ CEPC **WW** \rightarrow µvq \overline{q} \triangle WW \rightarrow q $\overline{q}q\overline{q}$ 0.04 0.04 0.04 $\rightarrow v \overline{v} q \overline{q} \circ ZZ \rightarrow q \overline{q} q \overline{q}$ ZZ →vvqq ○ ZZ →qqqq $ZZ \rightarrow v\overline{v}q\overline{q} \bigcirc ZZ \rightarrow q\overline{q}q\overline{q}$ $ZH \rightarrow vvqq \Box ZH \rightarrow qqqq$ **ZH** $\rightarrow vvqq$ \Box **ZH** $\rightarrow qqqq$ ZH →vvqq □ZH →qqqqq Jet Energy Scale 0.02 0 Jet Energy Scale 0 20.0- Jet Energy Scale 0.02 Energy Scale Ĕ → _0.02 -0.04 -0.04-0.04 -0.5 -2 20 30 40 50 60 70 80 90 100 _1 0.5 $\cos\theta_{\text{Gen}}$ E_{Gen} (GeV) ¢ Ger CEPCWS2020 24

Jet Angular Resolution

* JAR is around 1% in barrel region

25

Compare to LHC

- ✤ JER: 3-4 times better
- ✤ JAR: 1.0-1.6 times
- ✤ W mass precision~ 10GeV

Summary

- The CEPC physics objects are various and performances have been studied for the baseline
- For lepton identification, the performance of jet leptons is slightly degraded (1-2%) compare to the isolate case, due to the clustering confusion
- * $\pi 0$ reconstruction analysis shows the CEPC baseline detector can reconstruct the $\pi 0$ with energy as high as 20 - 30 GeV (About 97% of the $\pi 0$ in Z $\rightarrow \tau \tau$ events)

* Jet

- BMR used in the detector optimization, providing evidence for the detector design
- CEPC baseline JER ~ 4%, JAR ~1%

