Flavor-changing charm decays illuminating dark photons at CEPC

Jusak Tandean Taiwan University

Based on Jhih-Ying Su & JT, arXiv:2005.05297

Online

International Workshop on the High Energy Circular Electron-Positron Collider Shanghai, China 28 October 2020 Outline

- Introduction
 - FCNC transitions with missing energy
 - Massive vs massless dark photons
- FCNC decays of charmed hadrons with a massless dark photon emitted invisibly
- Conclusions

 Flavor-changing neutral current (FCNC) quark transitions q → q' ∉ with missing energy (∉) are suppressed in the standard model (SM)

> due to the GIM mechanism and loop factors.

Flavor-changing neutral current (FCNC) quark transitions q → q' ∉ with missing energy (∉) are suppressed in the standard model (SM)

> due to the GIM mechanism and loop factors.

- New physics (NP) beyond the SM could modify the SM contribution and/or induce channels with one or more invisible new particles.
 - If large enough, the potential NP impact may be testable by ongoing or near-future experiments seeking the FCNC decays of hadrons with missing energy.

 Flavor-changing neutral current (FCNC) quark transitions q → q' ∉ with missing energy (∉) are suppressed in the standard model (SM)

> due to the GIM mechanism and loop factors.

- New physics (NP) beyond the SM could modify the SM contribution and/or induce channels with one or more invisible new particles.
 - If large enough, the potential NP impact may be testable by ongoing or near-future experiments seeking the FCNC decays of hadrons with missing energy.
- □ Of interest here are the decays of charmed hadrons induced by $c \rightarrow u \not \!\!\!\! E$.
 - > The SM contribution is extremely small due to highly effective GIM suppression.
- Our focus is on the possibility in which the missing energy is carried away by a massless dark photon.

Massive dark photon

 Scenarios of NP may have a dark sector containing a new Abelian gauge group, U(1)_D, under which SM particles are singlets. Massive dark photon

- Scenarios of NP may have a dark sector containing a new Abelian gauge group, U(1)_D, under which SM particles are singlets.
- If U(1)_D is spontaneously broken, its associated gauge boson, the dark photon, becomes massive.

- Scenarios of NP may have a dark sector containing a new Abelian gauge group, U(1)_D, under which SM particles are singlets.
- If U(1)_D is spontaneously broken, its associated gauge boson, the dark photon, becomes massive.
- If the dark and SM U(1) gauge fields kinetically mix, the massive dark photon, A', gains direct couplings to SM fermions given by $\varepsilon eA' \cdot J_{EM}$ involving mixing parameter ε and the electromagnetic current eJ_{EM} .
- This possibility has motivated many searches for A', but with negative results so far.

Some limits on massive dark photon from negative results of its searches

- If U(1)_D stays unbroken, it is always possible for the associated gauge field and its SM counterpart to form linear combinations such that
 - > one of them, the massless dark photon ($\overline{\gamma}$), only sees the dark sector
 - the other one, identified with the ordinary photon, couples to both the SM and dark sectors, the latter with reduced strength.

- If U(1)_D stays unbroken, it is always possible for the associated gauge field and its SM counterpart to form linear combinations such that
 - > one of them, the massless dark photon ($\overline{\gamma}$), only sees the dark sector
 - the other one, identified with the ordinary photon, couples to both the SM and dark sectors, the latter with reduced strength.
- As the massless dark photon has no direct coupling to SM particles, it would have eluded the above searches.

- If U(1)_D stays unbroken, it is always possible for the associated gauge field and its SM counterpart to form linear combinations such that
 - > one of them, the massless dark photon ($\overline{\gamma}$), only sees the dark sector
 - the other one, identified with the ordinary photon, couples to both the SM and dark sectors, the latter with reduced strength.
- As the massless dark photon has no direct coupling to SM particles, it would have eluded the above searches.
- Nevertheless, it can still interact with SM fermions via higher-dimensional operators.
- This implies the need for different strategies to hunt the dark photon if it is massless.

- If U(1)_D stays unbroken, it is always possible for the associated gauge field and its SM counterpart to form linear combinations such that
 - > one of them, the massless dark photon ($\overline{\gamma}$), only sees the dark sector
 - the other one, identified with the ordinary photon, couples to both the SM and dark sectors, the latter with reduced strength.
- As the massless dark photon has no direct coupling to SM particles, it would have eluded the above searches.
- Nevertheless, it can still interact with SM fermions via higher-dimensional operators.
- This implies the need for different strategies to hunt the dark photon if it is massless.
- We focus on such operators inducing the transition $c \rightarrow u \overline{\gamma}$.
 - > The massless dark photon is emitted invisibly.
- They contribute to the FCNC decays of charmed hadrons with missing energy, potentially testable in running or upcoming experiments.

* Massless dark photon's flavor-changing couplings to u & c quarks $\mathcal{L}_{uc\bar{\gamma}} = \overline{u}\sigma^{\mu\nu}(\mathbb{C} + \gamma_5\mathbb{C}_5)c\overline{F}_{\mu\nu} + \text{H.c.}$

 $\mathbb{C} \& \mathbb{C}_5$ are constants depending on the NP model details, $\sigma^{\mu\nu} = \frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}]$ $\bar{F}_{\mu\nu} = \partial_{\mu}\bar{A}_{\nu} - \partial_{\nu}\bar{A}_{\mu}$ is the dark photon's field strength tensor. * Massless dark photon's flavor-changing couplings to u & c quarks $\mathcal{L}_{uc\bar{\gamma}} = \overline{u}\sigma^{\mu\nu}(\mathbb{C} + \gamma_5\mathbb{C}_5)c\overline{F}_{\mu\nu} + \text{H.c.}$

 $\mathbb{C} \& \mathbb{C}_5$ are constants depending on the NP model details, $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$ $\bar{F}_{\mu\nu} = \partial_{\mu} \bar{A}_{\nu} - \partial_{\nu} \bar{A}_{\mu}$ is the dark photon's field strength tensor.

* $\mathcal{L}_{uc\bar{\gamma}}$ could originate from dim-6 effective operators invariant under the SM gauge groups and the unbroken $U(1)_D$

$$\mathcal{L}_{_{\mathrm{NP}}} = rac{1}{\Lambda_{_{\mathrm{NP}}}^2} (C_{12} \overline{\mathcal{Q}_1} \sigma^{\mu
u} u_2 + C_{21} \overline{\mathcal{Q}_2} \sigma^{\mu
u} u_1) \tilde{H} ar{F}_{\mu
u} + \mathsf{H.c.}$$
 Dobrescu, 2005

 Λ_{NP} is an effective heavy mass scale, $C_{12,21}$ are generally complex, dimensionless coefficients $\mathcal{Q}_{1,2}(u_{1,2})$ are left-handed quark doublets (right-handed up-type quark singlets) from the first two families, $\tilde{H} = i\tau_2 H^*$, and H is the SM Higgs.

L_{ucγ} induces various FCNC decays of charmed hadrons with missing energy carried away by the massless dark photon, *γ*. The final states may also contain an ordinary photon, *γ*. • $\mathcal{L}_{uc\bar{\gamma}}$ induces various FCNC decays of charmed hadrons with missing energy carried away by the massless dark photon, $\overline{\gamma}$. The final states may also contain an ordinary photon, γ .

 Λ_c^+

- The decays of interest here include
 - $D o
 ho \overline{\gamma}, \quad D^0 o \omega \overline{\gamma}, \gamma \overline{\gamma}, \quad D_s^+ o K^{+*} \overline{\gamma}$ $\Lambda_c^+ o p \overline{\gamma}, \quad \Xi_c^{+(0)} o \Sigma^{+(0)} \overline{\gamma}$

- *L_{ucγ}* induces various FCNC decays of charmed hadrons with missing energy carried away by the massless dark photon, *γ*. The final states may also contain an ordinary photon, *γ*.
- The decays of interest here include
 - $D o
 ho\overline\gamma$, $D^0 o\omega\overline\gamma,\gamma\overline\gamma$, $D^+_s o K^{+*}\overline\gamma$
 - $\Lambda_c^+ o p \overline{\gamma}$, $\Xi_c^{+(0)} o \Sigma^{+(0)} \overline{\gamma}$

- Two-fold motivation to study them
 - Since vades the constraints on its massive counterpart, new ways are needed to probe it, which include using FCNC processes.

 Λ_c^+

 These FCNC decays may have large enough rates to be detectable by ongoing experiments, BESIII & BELLE II, or future ones such as super charm-tau factories and CEPC operated as a Z factory. Charmed-meson decays into charmless vector meson & dark photon

Mesonic matrix elements

$$\begin{split} &\langle \rho^+(k) | \overline{u} \sigma^{\mu\nu} c | D^+(k+\bar{q}) \rangle \bar{\varepsilon}^*_{\mu} \bar{q}_{\nu} = 2i f_{D^+\rho^+} \, \epsilon^{\eta\tau\mu\nu} \varepsilon^*_{\eta} k_{\tau} \bar{\varepsilon}^*_{\mu} \bar{q}_{\nu} \\ &\langle \rho^+(k) | \overline{u} \sigma^{\mu\nu} \gamma_5 c | D^+(k+\bar{q}) \rangle \bar{\varepsilon}^*_{\mu} \bar{q}_{\nu} = 2 f_{D^+\rho^+} \big(\varepsilon^* \cdot \bar{q} \, \bar{\varepsilon}^* \cdot k - \varepsilon^* \cdot \bar{\varepsilon}^* k \cdot \bar{q} \big) \end{split}$$

 $k(\varepsilon)$ is the ρ^+ momentum (polarization vector), $k+\bar{q}$ is the D^+ momentum $f_{D^+\rho^+}$ parametrizes form-factor effects at $\bar{q}^2 = 0$.

- * Branching fraction

$${\cal B}ig(D^+ o
ho^+ ar\gammaig) = rac{ au_{D^+} f_{D^+
ho^+}^2 ig(m_{D^+}^2 - m_{
ho^+}^2ig)^3}{2\pi m_{D^+}^3}ig(|\mathbb{C}|^2 + |\mathbb{C}_5|^2ig)$$

* $D^0 \rightarrow \rho^0 \bar{\gamma}, \omega \bar{\gamma} \& D_s^+ \rightarrow K^{*+} \bar{\gamma}$ have analogous branching fractions.

28 Oct 2020

Charmed-meson decays into photon & dark photon

Mesonic matrix elements

 $egin{aligned} &\langle \gamma(k) | \overline{u} \sigma^{\mu
u} c | D^0(k+ar{q})
angle ar{arepsilon}_{\mu}^* ar{q}_
u &= i e f_{D^0\gamma} \, \epsilon^{\eta au\mu
u} \check{arepsilon}_{\eta}^* k_ au ar{arepsilon}_{\mu}^* ar{q}_
u \,, \ &\langle \gamma(k) | \overline{u} \sigma^{\mu
u} \gamma_5 c | D^0(k+ar{q})
angle ar{arepsilon}_{\mu}^* ar{q}_
u &= e f_{D^0\gamma} \left(\check{arepsilon}^* \cdot ar{q} \,\, ar{arepsilon}^* \cdot k - \check{arepsilon}^* \,\, ar{arepsilon}_{\mu}^* \,\, ar{arepsilon}_{\mu} \,\, ar{arepsilon}_{\mu} \,\, ar{arepsilon}_{\mu} &= e f_{D^0\gamma} \left(\check{arepsilon}^* \cdot ar{arepsilon}_{\mu} \,\, ar{arepsilon}_{\mu}^* \,\, ar{areps$

which involve the electric charge e, the photon's polarization vector $\check{\epsilon}$, and the form-factor parameter $f_{D^0\gamma}$.

• Branching fraction $\mathcal{B}(D^0 o \gamma \bar{\gamma}) = rac{lpha_{
m e}}{2} au_{D^0} f_{D^0 \gamma}^2 m_{D^0}^3 (|\mathbb{C}|^2 + |\mathbb{C}_5|^2)$ Decays of singly charmed baryons into charmless baryon & dark photon

* Baryonic matrix elements

 $\langle p(k) | \overline{u} \sigma^{\mu\nu} \big(1, \gamma_5 \big) c | \Lambda_c^+(k + \bar{q}) \rangle \, \bar{\varepsilon}^*_\mu \bar{q}_\nu = f_{\Lambda_c^+ p}^- \overline{U_p} \, \sigma^{\mu\nu} \big(1, \gamma_5 \big) U_{\Lambda_c} \bar{\varepsilon}^*_\mu \bar{q}_\nu$

 $U_{\Lambda_c,p}$ are the baryons' Dirac spinors, $f_{\Lambda_c^+ p}$ encodes form-factor effects at $\bar{q}^2 = 0$.

* Decay amplitude

 $\mathcal{M}_{\Lambda_c^+ o p ar{\gamma}} = 2 f_{\Lambda_c^+ \, p}^{} \, \overline{\mathit{U}_p} ig(\mathbb{C} + \gamma_5 \mathbb{C}_5 ig) i \sigma^{\mu
u} \mathit{U}_{\Lambda_c} ar{arepsilon}_\mu^* ar{q}_
u$

* Branching fraction

$$\mathcal{B}ig(\Lambda_c^+ o par{\gamma}ig) = rac{ au_{\Lambda_c^+} f_{\Lambda_c^+ p}^2 ig(m_{\Lambda_c^+}^2 - m_p^2ig)^3}{2\pi m_{\Lambda_c^+}^3}ig(|\mathbb{C}|^2 + |\mathbb{C}_5|^2ig)$$

* $\Xi_c^{+,0} \to \Sigma^{+,0} \bar{\gamma}$ have analogous branching fractions.

$\boldsymbol{c} \rightarrow \boldsymbol{u} \, \overline{\boldsymbol{\gamma}} \text{ couplings}$

- How big the branching fractions might be depends on the largest values of the coefficients allowed by the relevant constraints.
 - \star There are still no direct experimental constraints on $\mathbb C$ and $\mathbb C_5.$
 - * An indirect weak bound on $|\mathbb{C}|^2 + |\mathbb{C}_5|^2$ can be inferred from the existing data on charmed-hadron decays.
 - * There are simplified models giving ranges of \mathbb{C} and \mathbb{C}_5 . Gabrielli *et al.*, 1607.05928

$\boldsymbol{c} \rightarrow \boldsymbol{u} \, \overline{\boldsymbol{\gamma}} \text{ couplings}$

- How big the branching fractions might be depends on the largest values of the coefficients allowed by the relevant constraints.
 - \star There are still no direct experimental constraints on $\mathbb C$ and $\mathbb C_5.$
 - * An indirect weak bound on $|\mathbb{C}|^2 + |\mathbb{C}_5|^2$ can be inferred from the existing data on charmed-hadron decays.
 - \star There are simplified models giving ranges of \mathbb{C} and \mathbb{C}_5 .

All this suggests adopting the benchmark limit
 $|\mathbb{C}|^2 + |\mathbb{C}_5|^2 < \frac{1.9 \times 10^{-16}}{\text{GeV}^2}$

Gabrielli et al., 1607.05928

Numerical results

Resulting predictions for branching fractions

 ${\cal B}(D^+ o
ho^+ ar\gamma) \, < \, 7.7 imes 10^{-5}$ ${\cal B}(D^0 o
ho^0 ar\gamma) \, < \, 1.5 imes 10^{-5}$ ${\cal B}(D^0 o \omega ar \gamma) \, < \, 2.5 imes 10^{-5}$ ${\cal B}(D_*^+ o K^{*+} ar \gamma) \, < \, 3.6 imes 10^{-5}$ ${\cal B}(D^0 o \gamma ar \gamma) \, < \, 3.1 imes 10^{-7}$ ${\cal B}(\Lambda_c^+ o par \gamma) \, < \, 1.6 imes 10^{-5}$ ${\cal B}(\Xi_c^+ o \Sigma^+ ar\gamma) \, < \, 2.9 imes 10^{-5}$ ${\cal B}(\Xi^0_c o \Sigma^0 ar\gamma) \, < \, 7.4 imes 10^{-6}$

 One or more of them may be within the reach of BESIII, Belle II, or future facilities such as super charm-tau factories & the CEPC.

Particle	Tera-Z	Belle II	LHCb
b hadrons			CEPC CDR, 1811.1054
B^+	6×10^{10}	$3 \times 10^{10} \ (50 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	3×10^{13}
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	3×10^8 (5 ab ⁻¹ on $\Upsilon(5S)$)	8×10^{12}
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^+	6×10^{10}		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
τ^+	3×10^{10}	$5\times 10^{10}~(50\mathrm{ab^{-1}}$ on $\Upsilon(4S))$	

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10^{12} Z-boson decays. We have used the hadronization fractions (neglecting p_T dependencies) from Refs. [431, 432] (see also Ref. [433]). For the decays relevant to this study we also show the corresponding number of particles produced by the full 50 ab⁻¹ on $\Upsilon(4S)$ and 5 ab⁻¹ on $\Upsilon(5S)$ runs at Belle II [430], as well as the numbers of b hadrons at LHCb with 50 fb⁻¹ (using the number of $b\bar{b}$ pairs within the LHCb detector acceptance from [435] and the hadronization fractions from [431]).

28 Oct 2020

Conclusions

- The FCNC charmed-hadron decays with missing energy are of great importance because they can serve as potentially promising searching grounds for light new particles from beyond the SM.
- If the missing energy is carried away by a massless dark photon, these charmed-hadron modes may have rates which are potentially discoverable by running or future heavy-flavor factories.