

PAL-XFEL S-band Linac

Heung-Sik Kang

PAL-XFEL

0.1 nm hard X-ray FEL using a 10 GeV normal conducting linac

Profile Monitor HU1E:SCM36 16-Mar-2013

^{2.5} 0.1 nm

Apr. 2011:PAL-XFEL project startedJun. 2012:Ground-breakingDec. 2014:Building completedJan. 2016:Installation completedApr. 2016:Commissioning startedJun. 2017:User-service started

14 Jun. 2016 First SASE lasing at 0.5 nm
28 Oct. 2016 Lasing at 0.15 nm
27 Nov. 2016 Saturation of 0.15 nm
16 Mar. 2017 Saturation of 0.1 nm

PAL-XFEL Parameters

Main parameters

e⁻ Energy e⁻ Bunch charge Peak current Slice emittance Repetition rate FEL pulse duration SX line switching (to be ch

11 GeVcharge20-200 pCent> 3 kAtance< 0.4 mm mrad</td>n rate60 Hzduration5 fs - 50 fsvitchingDC magnet(to be changed to Kicker by 2020)

RF system

- 50 S-band RF stations
 - 50 klystrons (80 MW, 4 us, 60 Hz, Thoshiba)
 - 50 klystron modulators
 - 42 energy doublers
 - 50 LLRF systems
 - 174 S-band accelerating structures
- 1 X-band RF

Operation RF phase

•	Gun	-33.7
•	L1	-10.5
•	X-linearizer	-180.0
•	L2	-19.6
•	L3	-3.0
•	L4	-2.0

Accelerator Tunnel View

PAL-XFEL Layout

Klystron gallery

Linac tunnel

Hard X-ray experimental hall

Classification	Section	K&M	A/S	Energy Doubler	Energy (GeV)
Injector linac		3	2	0	0.139
	L1	2	4	0	0.33
	L2	10	40	10	2.52
Hard X-ray main linac	L3A	2	8	2	3.0
	L3B	2	8	2	3.45
	L4	27	108	27	10
Soft X-ray linac		1	4	1	3~3.5
Deflector (S-band)	L1, L3	3	4	0	
Linearizer (X-band)	L1	1	1	0	
Total No.		51	180	42	

PAL-XFEL Machine Performance

- A highly stable FEL performance is achieved through a reliable & stable operation of the S-band electron linac
 - Based on a matured S-band technology established in Industry ٠
 - Temporal stability: ~18 fs (rms) between XFEL pulses and optical pulses from a synchronized laser system
 - **Relative electron beam energy jitter**: < 1.5 x 10-4 ٠ \rightarrow on crest acceleration: < 5 x 10-5
 - **Electron beam arrival time jitter**: < 15 fs ٠
 - **Projected emittance** ٠
 - Injector : 0.42 / 0.43 mm-mrad @250 pC
 - Linac end : 0.60 / 0.55 mm-mrad @220 pC
 - RF stability (rms)

٠

٠

- L1 (w/o SLED)
- L2, L3, & L4 (w/ SLED) ٠
- : 0.01 degrees / 0.01%
- : 0.015 degrees / 0.02%

100

50

-100

-50

Electron beam arrival time jitter Histogram

0

Arrival Time (fs)

50

100

Electron energy jitter : 0.012% rms Photon wavelength jitter : 0.024% rms $\sim \frac{1}{2}$ FEL parameter

• Since the central wavelength jitter is two times smaller than the SASE bandwidth, self-seeded bunches are almost always amplified.

Basic Unit Module of XFEL Linac

Linac System

Klystron modulator voltage stability : < 30 ppm

L1 (w/o SLED)

L2, L3, and L4 (w/ SLED)

- Height of beam center: 80 cm
- Cooling temperature of accelerating structure: 30 +/- 0.01 °C
- Quasi symmetric feed (single arm coupling) to reduce the dipole kick
 - coupler cavity with round geometry: 120 structures by Mitsubishi
 - coupler cavity with racetrack geometry: 54 structures by Vitzro Tech

S-band Structure (Qausi-symmetric coupler with racetrack shape)

- Quasi symmetric feed (single arm coupling) to reduce the dipole kick
 - The same direction of coupler cavity makes the waveguide network simple
 - Racetrack type coupler cavity to reduce the quadrupole kick
- Max. accelerating gradient: 27 MV/m

Description	S-band
Operating Frequency(GHz)	2856 ±0.5
Mode	2p/3
Q	13,000
Shunt Impedance(Mohms)	53
Attenuation constant	0.57(4.9dB)
Filling Time(us)	0.83
Water Temperature(°C)	30±0.01
Туре	Quasi-Symmetry
Total Length(mm)	3138

dw

(b)

S-band Energy Doubler

- Two-hole coupling structure to withstand 380 MW peak RF power
- Energy gain: ~1.6
- Remote control of the tuning frequency by a stepping motor
- Collaborated with a Korean company
 : Vitzro-Tech

20-ppm Stability Inverter PS-type Modulator

	Unit	Value
Max. peak power	MW	200
Beam voltage	kV	400
Beam current	Α	500
Beam pulse width	μ s	8
Repetition rate max.	Hz	60
RF pulse width(flattop)	μ s	4
Load impedance	Ω	800
Pulse transformer turn ratio		17
PFN impedance	Ω	2.7
PFN voltage	kV	46

I	nverte	r PS	*
- 1111111	· · · · · · · · · · · · · · · · · · ·	•	01
· ·	brecision	CCPS SORV - 35 KJ/S	

Parameter	Value	Unit
Avg. Output Power	125	kW
Max. Output Voltage	50	kV
Pulse width	7.5	us
Avg. Output Current	8.5	А
AC Input Voltage	480	VRMS
Efficiency	90	%
Cooling water	40	L/Min

- Collaborated with two Korean companies: Posco-ICT(Vitzro-Tech) & Dawon-Sys

Photocathode RF gun in PAL-XFEL

Emittance growth due to multipole transverse magnetic modes in an rf gun

M. S. Chae,¹ J. H. Hong,¹ Y. W. Parc,^{1,*} In Soo Ko,¹ S. J. Park,² H. J. Qian,³ W. H. Huang,³ and C. X. Tang³ ¹Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea ²Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Korea ³Department of Engineering Physics, Tsinghua University, Beijing 100084, China (Received 25 March 2011; published 28 October 2011)

- 1. With 4 ports, we can make almost uniform electric field distribution.
- 2. This model is easy to fabricate.
- 3. Four ports is helpful to maintain the vacuum level.

Azimuthal Angle [rad]

RF timing distribution system

- based on low phase noise oscillator and coaxial cable (476 MHz) with passive stabilization
- Balanced optical & microwave phase detector (BOM-PD) for synchronization between RF and optical laser

Temperature stabilized duct for reference RF

3. Main Business Participation (Project Experience)

VITZRO TECH

SLAC LCLS-II Project - X-Band Cavity RF BPM

Vitzrotech manufactured and supplied X-Band RF BPM (Beam Position Monitor) for SLAC LCLS-II with core technologies such as precision machining, precision joining (Brazing), precision assembly and Tuning

- 1. RF Analysis, Design (CST)
- 2. Precision Machining (Mirror surface)
- 3. Surface Treatment for Ultra High Vacuum Component
- 4. Ultra Precision Assembly & Brazing
- (Feedthrough + Cavity Body)
- 5. RF Test & Tuning

•	Dipol	e C	avity
---	-------	-----	-------

Parameter	Value
Nominal Frequency TM ¹¹⁰	11.424 GHz
Tolerance TM110	+- 10 MHz
QL or Qtotal	2000~3000
Cavity Coupling [β]	1.9-2.1
Q0	5800-9300
Qext	2762-4894
X/Y Cross Talk	< - 20 dB

• Reference Cavity

Parameter	Value
Nominal Frequency TM ¹¹⁰	11.424 GHz
Tolerance TM110	+- 10 MHz
QL	2000~3000
Cavity Coupling [β]	1.9-2.1
Q0	5800-9300
Qext	2762-4894

Electron Beam Orbit Stability

14.4 keV FEL (1 mJ, 20 Nov. 2018)

Thank you for your attention

Back-up slide

2018 User service operation statistics

- 2018 operation statistics
 - Planned beam time: 2057 h
 - Fault time: 101 h
 - Beam availability: 95%

Machine Performances

Photon energy

2.0 ~ 14.5 keV

- Saturated FEL up to 14.5 KeV
- FEL pulse energy2.0 mJ at 9.7 KeV
- ◆ FEL beam pulse duration
- ♦ FEL power stability
- ♦ FEL position stability
- ◆ FEL central wavelength jitter 0.024 %
- ♦ E-beam energy jitter < 0.015 %</p>
- ♦ E-beam arrival time jitter < 15 fs</p>
- ♦ FEL beam availability

10 ~ 35 fs (fwhm) < 5% RMS

~ 95%

< 10% of beam size

FEL intensity stability (9.7 keV FEL)

Short-term (3 min.)

Long-term (10 hour)

Injector Emittance

Angular RMS

X (mm)

%

4.33

18

Main System Supplier for PAL-XFEL

ltem	No. of components	Supplier
S-band Accelerating Column	175	120: Mitsubishi 55: Vitzrotech
S-band Energy Doubler	42	Vitzrotech
200-MW Modulator	50	Vitzrotech Dawon-Sys
80 MW S-band Klystron	50	Toshiba
S-band LLRF / SSA	50	Mobiis
Magnet	251	KR Tech T. H. Elema
Undulator	37 (20 for HX, 7 for SX)	SFA Seong-Ho High tech.
BPM electronics	Stripline, cavity BPM	SLAC

Linac Tunnel

X-band SSA

Specifications

- 20-way combiner + Dual direc. coupler I.L
- < 0.8dB
- Pout of Unit SSPA
- 20ea * Unit SSPA
- Final Coaxial Cable I.L
- Final Flange Adapter I.L
- Final Pout

- > 49.0dBm (80W)
- > 62.0dBm (1.6KW)
- < 0.5dB
- < 0.2dB
- 60.5dBm (1.1KW)

High Power Test of Accelerating Structures

RF Conditioning time (60Hz, 27MV/m)

Maker	Conditioning Time (day)
RI	94.69
MHI	31.36
VITZRO	29.81

Dark Current vs. Rep. Rate

SLED frequency tuning system

SLED frequency tuning system layout

(Current Business Scope

5. Facility & Certification

VITZRO TECH

🕥 Manufacturing Facility

3. Main Business Participation (Project Experience)

VITZRO TECH

0 PAL 4th Generation XFEL - Accelerating Column & Waveguide Components

- > Vitzrotech had participated in 4th Generation PAL XFEL
- > Designed, Analyzed, Fabricated, Supplied, Installed **Accelerator Columns** [From Engineering to Installation]
- > Fabricated, Supplied, Installed whole quantities of Waveguide components and SLED Cavity
- > Fabricated, Supplied, Installed Beam Line Systems

Waveguide Component

Straight

H-Bend

Single Type D.C

Dual Type D.C

Pumping Port

Power Combiner

Rounded Type

Twisted Type

Rounded Type (Cooling)

Straight (Cooling)

3. Main Business Participation (Project Experience)

VITZRO TECH

O PAL 4th Generation XFEL – SLED Cavity

RF Inspection by Network Analyzer

Mechanical Specification

Parameter	Value
Power Divider Length[mm]	380
Vacuum Leak Rate [Pa.m³/sec]	≤1.3E-11

• Electrical Specification

Parameter	Value
Unloaded Q	>95,000
Coupling Coefficient	5.0±0.1
Cavity mode	TE 0,1,5
Operating Freq.[MHz]	2,856
Operating Temp.[°C]	30±0.1
Maximum Peak RF Power[MW]	320
Maximum average RF power[kW]	≤23
Detune	Enable