Requirements of TPC to TDAQ

Preliminary estimation

Huirong Qi and Zhi Deng

on behalf of the CEPC TPC working group

International Workshop on High Energy Circular Electron-Positron Collider October, 28, 2020

Overview of TPC concept

TPC detector concept:

- Under 2-3 Tesla magnetic field (Momentum resolution: ~10⁻⁴/GeV/c with TPC standalone)
- Large number of 3D space points(~220 along the diameter)
- dE/dx resolution: <5%</p>
- ~100 μm position resolution in rφ
 - ~60µm for zero drift, <100µm overall
 - Systematics precision (<20µm internal)
- **D** TPC material budget
 - □ <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- **□** 2-hit resolution in rφ : ~2mm
- □ Module design: ~200mm×170mm
- Minimizes dead space between the modules: 1-2mm

Overview of two readout options

Pad TPC and Pixel TPC

E

pillars

GridPixes:

Pad TPC for collider

- Active area: 2×10m²
- One option for endplate readout - GEM or Micromegas
 - $-1 \times 6 \text{ mm}^2 \text{ pads}$
 - 106 Pads
 - 84 modules
 - Module size: 200×170mm²
 - Readout: Super ALTRO
 - CO₂ cooling

Pixel TPC for collider

readout pads

But to readout the TPC with

 \rightarrow 100-120 chips/module

240 modules/endcap (10 m²)

 \rightarrow 50k-60k GridPixes

 $\rightarrow 10^9$ pixel pads

For Collider @cost:

track of high energetic particle cathode

Benefits of **Pixel** readout:

- Lower occupancy
- \rightarrow 300 k Hits/s at small radii.
- \rightarrow This gives < 12 single pixels hit/s.
- \rightarrow With a read out speed of 0.1 msec (that
- matches a 10 kHz Z rate)
- \rightarrow the occupancy is less than 0.0012
- Improved dE/dx
 - \rightarrow primary e- counting
 - Smaller pads/pixels could result in better resolution!
 - □ Gain <2000
 - Low IBF*Gain<2</p>
 - \Box CO₂ cooling

Requirements of TPC to TDAQ - I

Reference info from ALICE TPC(in operation), STAR TPC(in operation) and ILD TPC(future)

Pads TPC (example)

- □ There is full size TPC detector with the outer radius of 1.8m and inner radius of 0.3m. All of the two endplate mounted in two sides.
- Every channel will be connected in the small pad(1mm*6mm), thus the total number of channels is 5000/module*84/endplate*2=840K channels.
- Each ASIC has 128 channels and there is 6.5K ASIC chips integrated with the FEE and DAQ.
- The bunch crossing (BX) rate is 40 MHz and we need to deal with every BX at one IP in circular collider.

Requirements of FEE readout

Parameter	Specification
Noise	<200e
Conversion gain	>15mV/fC
Peaking time (defaul)	100ns
Non lineartity	<1%
Cross talk	<0.3%
Dynamic range	>2000
Power consumption	<5mW/ch

- 4 -

Requirements of TPC to TDAQ - II

Reference info from ALICE TPC(in operation), STAR TPC(in operation) and ILD TPC(future)

Pads TPC (example)

- There are average 80 particles/ BX. Each particle produces 600 channels of signal. The noise rate is 10⁻⁴/ BX / channel. Thus the number of channels with hit (signal & noise) = 80*600 + (840K-80*600) *10⁻⁴ = 48K/BX.
- Preliminary estimation of raw data size : Data will be zero-suppressed at each ASIC. There are some initial information of 2-byte header whether or not the ASIC has any hit. For each hit we use a 7-bit channel ID, and 9-bit ADC, i.e. 2 bytes / hit. So the useful data rate is 6.5K*2 + 48K*2 = 22K bytes/BX. All of the total raw data rate is 13.8GB/s.
- Some additional information of raw data should be included. (Example: Slot number, crate number, board number, gas flow, temperature and humidity...)
- Trigger and triggerless options