Requirements from the Vertex Detector for TDAQ

Wei Wei 2020-10-28

CEPC Workshop 20201028

Hit rate Calculation for the CEPC vertex

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density @ different radius
 - Higgs: 2.5/0.2/0.03 hits/bunch/cm²
 - W: 2.5/0.13/0.02 hits/bunch/cm²
 - Z: 0.2/0.03/0.002 hits/bunch/cm²
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$

• The (highest) hit rate: Higgs 11 MHz/cm², W 36MHz/cm², Z 24 MHz/cm²

- Outter layers have much less (background) hit rate
- Pixel array: 1024 rows×512 cols, full size chip sensitive area: 1.28cm×2.56cm (~3.28cm²)
 - Minimum address width: 19bits
- (Highest) Hit rate: 120MHz/chip @W

Background Hit Density From the CDR of CEPC

Event driven readout: architecture of the TaichuPix

- Simplified column-drain readout:
 - Each double column shares a common Fast-Or bus for hit indication
 - Common 8bit- time stamp register @40MHz will record the hit arrival time
 - Hit pixels in the same cluster will share a common time stamp as the Trigger ID
- **Event-driven readout in TaichuPix**
 - Priority based data driven readout
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate
 - 32bits/event with ignorable data loss (@CEPC's hit rate)
 - Trigger/Triggerless compatible by configuration

Concerning the TDAQ

- Intrinsically zero-suppression
- in trigger mode, a ±3LSB trigger error window was given, the output data can be further suppressed by higher level trigger

TaichuPix of the vertex detector for TDAQ

• Readout bandwidth

Note: all calculated at the W running mode with the highest hit rate (~120MHz/chip), other modes generate less data volume

Mode	Data rate	Interface	Power @full speed	Trigger latency
Trigger	160Mbps/chip	LVDS	100mW/cm2	3us @chip level
Triggerless /continuous	4Gbps/chip	CML	150mW/cm2	Continuous

- Total area of the CEPC vertex detector: ~1.5m² (about 5000 chips)
 - Total data volume of the vertex detector depends on the final layout of the ladder and chips/ladder
 - 4Gbps/208Mbps/32Mbps @Triggerless mode at different radius
- Expected extra expense with backend electronics
 - Longer trigger latency is expected
 - > Chip data may be sent at triggerless/continuous mode to be registered in backend
 - > The real trigger decision may happen at the backend electronics
 - Longer time stamp bits for longer FIFO for possible longer
 - Longer data width for each event/Trigger ID
 - Necessary communication expense with DAQ

TaichuPix's preference for the trigger

- TaichuPix will not output information to help for trigger decision, but only receive trigger from other detectors
- Concerning data speed, power consumption, and complexity of the frontend flex cable, trigger mode is much more preferred than triggerless
 - Tcpx still keeps compatible for both trigger/triggerless, up to now
- Requirement for high level signals
 - System clock should be synchronized with bunch crossing clock (e.g. 40MHz @ Z pole)
 - Trigger from trigger decision, ~ 3us trigger latency
 Larger trigger latency will result in larger data volume
- **Note:** for rolling shutter readout(e.g. Jadepix @MOST1), it is hard to estimate the data volume at the current stage
 - Depends on the final pixel size, zero suppression strategy, trigger mode...

Backup information for useful calculation

	Table. 1 The hit densi	ty of CEPC≁			- 12
Parameter.₀	Unit _*	Higgs₽	W₄∂	$Z^{\scriptscriptstyle {\rm s}^{\rm c}}$	+
Bunch spacing.	ns+ ³	<mark>680</mark> ₽	210 ¢	25₽	+
	hits/bunch/cm ² +	2.50	2.5₽	0.2*	4
Hit density₽	hits/bunch↔	8.20	8.2₽	0.664	+
	pixels/bunch*	25+	25+	20	+
	MHz/cm ² ⁴³	11.0	36₽	24.0	+
Hıt pıxel rate₽	MHz/chip#	36₽	120₽	80₽	+
Chip data rate↔	Gbps 🚽	1.15+	3.84+	2.56₽	+
(triggerless)∻	MHz/32bit+	36₽	120 <i>v</i>	80∢	+

- The hit rate: Higgs 11 MHz/cm², W 36MHz/cm², Z 24 MHz/cm²
- Suppose the pixel array size is 512rows*1024cols, 25um*25um pixel size, and 1.28cm*2.56cm pixel array area
- → Hit rate: 120MHz/chip, or <u>225Hz/pixel (average), 120kHz/col (ave)</u>
- Every hit has 27~32bits (async): col addr 9bits (512), row addr 10bits (1024), time stamp ~8bits (suppose 40MHz clock, covers 6.4us time region)
- If triggerless, all the raw hit data should be sent off chip (most are background events)
 - The data rate: ~32bits*120MHz= 3.84Gbps
- In trigger:
 - Data rate@W: ~32bit * 25pixels/bunch * 20kHz trigger rate * 7 error windows= 112Mbps ~160Mbps
 - Data rate@Z: ~32bit * 2pixels/bunch * 100kHz trigger rate *7 error windows= 44.8Mbps < 160Mbps</p>

Thank you!