**2020 International Workshop On the CEPC** 

# Implication of Higgs/EW precision on 2HDM

#### Wei Su

University of Adelaide

1709.06103 ( J. Gu, H. Li, Z. Liu, S. Su ,WS) 1808.02037 ( N. Chen, T. Han, S. Su, WS, Y. Wu ) 1912.01431 ( N. Chen, T. Han, S. Li, S. Su, WS, Y. Wu ) 2008.05492 (T. Han, S. Li, S. Su, WS, Y. Wu )



## Outline

\*Higgs/Z-pole Precision Measurements

\*2HDM: tree level

\*2HDM: one-loop level

\*Conclusion

#### **Higgs Precision Measurements**





## Precision: Higgs couplings

#### LHC Run-II: ATLAS-CONF-2019-005 **ATLAS** Preliminary ⊷−Total Stat. - Syst. SM $\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$ $m_{H} = 125.09 \text{ GeV}, |y_{11}| < 2.5$ p<sub>SM</sub> = 71% Total Stat. Syst. + 0.09 ggF үү 0.96 ± 0.14 ( ±0.11. ggF *ZZ* 1.04 $\pm 0.14$ , $\pm 0.06$ ) ggF WW 1.08 ± 0.19 ( $\pm 0.11$ , $\pm 0.15$ ) +0.46 ggF ττ +0.370.96 ggF comb. + 0.07 1.04 ± 0.09 ( ±0.07, - 0.06 +0.26 VBF γγ +0.40 -0.35 + 0.31 1.39 VBF ZZ + 0.98 - 0.83 +0.94 -0.81, + 0.27 2.68 VBF WW + 0.36 - 0.35 + 0.29 - 0.27 0.59 ± 0.21) VBF ττ +0.58 + 0.42 + 0.40 1.16 - 0.35 - 0.40 + 1.63 - 1.57 VBF bb + 1.67 - 1.61 + 0.39 3.01 + 0.24 - 0.22 VBF comb. + 0.18 +0.16 1.21 -0.13 - 0.17 + 0.58 - 0.54 + 0.53 - 0.49 + 0.25 VH γγ 1.09 VH ZZ + 1.20 - 0.78 + 1.18 +0.18 0.68 + 0.27 + 0.20 VH bb +0.18 1.19 + 0.24 +0.17 VH comb. 1.15 ±0.16, -0.16 +0.41 + 0.36 - 0.33 + 0.19 ttH+tH γγ 1.10 -0.14 + 0.59 - 0.57 + 0.43 + 0.41 ttH+tH VV 1.50 - 0.42 - 0.38 + 0.75 + 1.13 + 0.84 *ttH+tH* ττ 1.38 - 0.76 + 0.60 - 0.59 ttH+tH bb 0.79 $\pm 0.29$ , $\pm 0.52$ ) $^{+0.26}_{-0.24}$ ( $\pm 0.17$ , $^{+0.20}_{-0.18}$ ttH+tH comb. 1.21 -2 2 6 8 0 4 Parameter normalized to SM value



4

## Precision: Higgs couplings

#### CEPC-CDR, FCC-ee, ILC Operating Scenarios

| collider                         | CEPC                  | FCC-ee              |                                               |                 |                     | ILC                   |                   |                     |                   |
|----------------------------------|-----------------------|---------------------|-----------------------------------------------|-----------------|---------------------|-----------------------|-------------------|---------------------|-------------------|
| $\sqrt{s}$                       | $240\mathrm{GeV}$     | $240{ m GeV}$       | $365{ m GeV}$                                 |                 | $250{ m GeV}$       | 350                   | GeV               | $500{ m GeV}$       |                   |
| $\int \mathcal{L} dt$            | $5.6 \text{ ab}^{-1}$ | $5 \text{ ab}^{-1}$ | $1.5 {\rm ~ab^{-1}}$                          |                 | $2 \text{ ab}^{-1}$ | $200 \ {\rm fb}^{-1}$ |                   | $4 \text{ ab}^{-1}$ |                   |
| production                       | Zh                    | Zh                  | Zh                                            | $ u \bar{ u} h$ | Zh                  | Zh                    | $\nu \bar{\nu} h$ | Zh                  | $\nu \bar{\nu} h$ |
| $\Delta\sigma/\sigma$            | 0.5%                  | 0.5%                | 0.9%                                          | —               | 0.71%               | 2.0%                  |                   | 1.05                |                   |
| decay                            |                       |                     | $\Delta(\sigma \cdot BR) / (\sigma \cdot BR)$ |                 |                     |                       |                   |                     |                   |
| $h \to b\bar{b}$                 | 0.27%                 | 0.3%                | 0.5%                                          | 0.9%            | 0.46%               | 1.7%                  | 2.0%              | 0.63%               | 0.23%             |
| $h \to c\bar{c}$                 | 3.3%                  | 2.2%                | 6.5%                                          | 10%             | 2.9%                | 12.3%                 | 21.2%             | 4.5%                | 2.2%              |
| $h \to gg$                       | 1.3%                  | 1.9%                | 3.5%                                          | 4.5%            | 2.5%                | 9.4%                  | 8.6%              | 3.8%                | 1.5%              |
| $h \to WW^*$                     | 1.0%                  | 1.2%                | 2.6%                                          | 3.0%            | 1.6%                | 6.3%                  | 6.4%              | 1.9%                | 0.85%             |
| $h \to \tau^+ \tau^-$            | 0.8%                  | 0.9%                | 1.8%                                          | 8.0%            | 1.1%                | 4.5%                  | 17.9%             | 1.5%                | 2.5%              |
| $h \rightarrow ZZ^*$             | 5.1%                  | 4.4%                | 12%                                           | 10%             | 6.4%                | 28.0%                 | 22.4%             | 8.8%                | 3.0%              |
| $h 	o \gamma \gamma$             | 6.8%                  | 9.0%                | 18%                                           | 22%             | 12.0%               | 43.6%                 | 50.3%             | 12.0%               | 6.8%              |
| $\mid h \rightarrow \mu^+ \mu^-$ | 17%                   | 19%                 | 40%                                           | _               | 25.5%               | 97.3%                 | 178.9%            | 30.0%               | 25.0%             |
| $(\nu\bar{\nu})h \to b\bar{b}$   | 2.8%                  | 3.1%                | _                                             | _               | 3.7%                | _                     |                   |                     | _                 |

#### Precision: EW observables

#### CEPC-CDR, FCC-ee, ILC Operating Scenarios

| Observables                            | FCC-ee                 | CEPC                 | ILC                    |
|----------------------------------------|------------------------|----------------------|------------------------|
| $\delta m_h \; [\text{GeV}]$           | $1.0 \times 10^{-2}$   | $5.9 \times 10^{-3}$ | $1.5 \times 10^{-2}$   |
| $\delta lpha_{ m had}$                 | $3.8 \times 10^{-5}$ * | $4.7 \times 10^{-5}$ | $3.8 \times 10^{-5}$ * |
| $\delta m_Z \; [{ m GeV}]$             | $1.0 \times 10^{-4}$   | $5.0 \times 10^{-4}$ | $2.1 \times 10^{-3}$   |
| $\delta m_t \; [{ m GeV}]$             | $2.0 \times 10^{-2}$   | $6.0 \times 10^{-1}$ | $1.7 \times 10^{-2}$   |
| $\delta m_W \; [{ m GeV}]$             | $7.0 	imes 10^{-4}$    | $1.0 \times 10^{-3}$ | $2.5 	imes 10^{-3}$    |
| $\delta\Gamma_W \; [{ m GeV}]$         | $1.5 	imes 10^{-3}$    | $2.8 \times 10^{-3}$ | $5.0 \times 10^{-3}$   |
| $\delta\Gamma_Z \; [\text{GeV}]$       | $1.0 \times 10^{-4}$   | $5.0 \times 10^{-4}$ | $7.0 	imes 10^{-4}$    |
| $\delta A_b^{ m FB}$                   | $3.0 	imes 10^{-4}$    | $1.0 \times 10^{-4}$ | $1.6 \times 10^{-3}$ * |
| $\delta A_c^{ m FB}$                   | $5.9 	imes 10^{-4}$    | $2.2 \times 10^{-4}$ | $3.5 \times 10^{-3}$ * |
| $\delta A_\ell^{ m FB}$                | $9.0 	imes 10^{-6}$    | $5.0 \times 10^{-5}$ | $1.0 \times 10^{-3}$ * |
| $\delta R_b$                           | $6.0 	imes 10^{-5}$    | $4.3 \times 10^{-5}$ | $1.5 \times 10^{-4}$   |
| $\delta R_c$                           | $1.7 \times 10^{-4}$   | $1.7 \times 10^{-4}$ | $5.2 \times 10^{-4}$   |
| $\delta R_\ell$                        | $1.0 \times 10^{-3}$   | $2.1 \times 10^{-3}$ | $4.0 \times 10^{-3}$   |
| $\delta \sigma_{\rm had} \ [{\rm nb}]$ | $4.0 \times 10^{-3}$   | $5.0 \times 10^{-3}$ | $3.7 \times 10^{-2}$ * |

#### Precision: EW observables

#### CEPC-CDR, FCC-ee, ILC Operating Scenarios

|                  | Observables              | FCC-ee                 | CEPC                 | ILC                    |
|------------------|--------------------------|------------------------|----------------------|------------------------|
| Oblique paramete | ers $n_h$ [GeV]          | $1.0 \times 10^{-2}$   | $5.9 \times 10^{-3}$ | $1.5 \times 10^{-2}$   |
|                  | $\delta \alpha_{ m had}$ | $3.8 \times 10^{-5}$ * | $4.7 \times 10^{-5}$ | $3.8 \times 10^{-5} *$ |

|   | Current         |   |      | CEPC  |             |   | FCC-ee   |             |             |          | ILC    |             |             |   |        |         |
|---|-----------------|---|------|-------|-------------|---|----------|-------------|-------------|----------|--------|-------------|-------------|---|--------|---------|
|   | correlation     |   | tion | σ     | correlation |   | $\sigma$ | correlation |             | $\sigma$ |        | correlation |             |   |        |         |
|   | 0               | S | T    | U     | $(10^{-2})$ | S | T        | U           | $(10^{-2})$ | S        | T      | U           | $(10^{-2})$ | S | T      | U       |
| S | $0.04 \pm 0.11$ | 1 | 0.92 | -0.68 | 1.82        | 1 | 0.9963   | -0.9745     | 0.370       | 1        | 0.9898 | -0.8394     | 2.57        | 1 | 0.9947 | -0.9431 |
| T | $0.09\pm0.14$   | — | 1    | -0.87 | 2.56        | _ | 1        | -0.9844     | 0.514       | _        | 1      | -0.8636     | 3.59        | _ | 1      | -0.9569 |
| U | $-0.02\pm0.11$  | _ | _    | 1     | 1.83        | _ | _        | 1           | 0.416       | _        | _      | 1           | 2.64        | _ | _      | 1       |

| $\delta A_c^{ m FB}$                  | $5.9 \times 10^{-4}$ | $2.2 \times 10^{-4}$ | $3.5 \times 10^{-3}$ * |
|---------------------------------------|----------------------|----------------------|------------------------|
| $\delta A_\ell^{ m FB}$               | $9.0 \times 10^{-6}$ | $5.0 	imes 10^{-5}$  | $1.0 \times 10^{-3}$ * |
| $\delta R_b$                          | $6.0 \times 10^{-5}$ | $4.3 \times 10^{-5}$ | $1.5 \times 10^{-4}$   |
| $\delta R_c$                          | $1.7 \times 10^{-4}$ | $1.7 \times 10^{-4}$ | $5.2 \times 10^{-4}$   |
| $\delta R_\ell$                       | $1.0 \times 10^{-3}$ | $2.1 \times 10^{-3}$ | $4.0 \times 10^{-3}$   |
| $\delta\sigma_{\rm had} \ [{\rm nb}]$ | $4.0 \times 10^{-3}$ | $5.0 \times 10^{-3}$ | $3.7 \times 10^{-2}$ * |

## **2HDM: Brief Introduction**

#### • Parameters (CP-conserving, Flavor Limit, $Z_2$ Symmetry)







#### **2HDM: Tree Level**



#### **2HDM: Tree Level Model Distinction**



#### **2HDM: One-Loop Level**



(1) Loop + degenerate:  $\cos (\beta - \alpha) = 0$ ,  $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (2) Tree + Loop + degenerate:  $\cos (\beta - \alpha) \neq 0$ ,  $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (3) Tree + Loop + non-degenerate:  $\Delta m_{a} = m_{A} - m_{H}$ ,  $\Delta m_{c} = m_{H^{\pm}} - m_{H}$ 

#### 2HDM: *Loop* + *degenerate*



$$\cos (\beta - \alpha) = 0,$$
  
 $m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$   
Theoretical constraints

$$\lambda v^2 \equiv m_{\Phi}^2 - m_{12}^2/s_{\beta}c_{\beta}$$

 $-125^{2} \text{GeV}^{2} < \lambda v^{2} < 600^{2} \text{GeV}^{2}$ 

$$\lambda \in (-0.26, 5.95)$$
  
$$\lambda_4 = \lambda_5 = \lambda_3 - 0.258 = -\lambda$$

## 2HDM: *Loop* + *degenerate*



## 2HDM: *Loop* + *degenerate*



#### Higgs direct search at LHC

Conventional Search



Exotic: A -> HZ 50 20 10 5 **BP-B**  $m_A = m_{H^+} > m_H$   $\Delta m = 200 \text{ GeV}$ 2  $A \rightarrow HZ \rightarrow \tau \tau II$ LHC HL-LHC FCC 1 0.5 1.0 2.0 3.0 4.0 *m<sub>A</sub>* [TeV] S. Su et. al., 1812.01633

an eta



 $\cos (\beta - \alpha) \neq 0,$  $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ 

CEPC fit, Type-II









Complementary to Z pole precision



#### Conclusion

- Tree level studiesLoop level studies
  - The tange tange of Type-I  $\uparrow$
  - Complementary to HL-LHC
  - Higgs precisions also constrain non-SM Higgs mass splitting
  - (lepton collider comparison  $\cdots$ )

## Thanks for your attention!





## 2HDM: Tree Level

#### 2HDM Type-II

| Model   | $\kappa_V$             | $\kappa_u$                 | $\kappa_d$                  | $\kappa_\ell$               |
|---------|------------------------|----------------------------|-----------------------------|-----------------------------|
| 2HDM-I  | $\sin(\beta - \alpha)$ | $\cos \alpha / \sin \beta$ | $\cos lpha / \sin eta$      | $\cos \alpha / \sin \beta$  |
| 2HDM-II | $\sin(\beta - \alpha)$ | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $-\sin \alpha / \cos \beta$ |
| 2HDM-L  | $\sin(\beta - \alpha)$ | $\cos \alpha / \sin \beta$ | $\cos lpha / \sin eta$      | $-\sin \alpha / \cos \beta$ |
| 2HDM-F  | $\sin(\beta - \alpha)$ | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $\cos \alpha / \sin \beta$  |



Alignment limit :  $\cos (\beta - \alpha) = 0$ g(2HDM) = g(SM)

#### 2HDM: One-Loop Level Model Distinction



#### 2HDM: One-Loop Level Model Distinction





