NLO EWPO in SMEFT and Higgs trilinear coupling determination

Pier Paolo Giardino

The 2020 International Workshop on the High Energy Circular Electron Positron Collider

Shanghai - 26/10/2020

S. Dawson, PPG, *Phys.Rev.D* 101 (2020) 1, 013001; G. Degrassi, M. Fedele, PPG, JHEP 1704 (2017) 155

Characteristics of the EW sector of the SM

- (Relatively) Large number of observables,
- (Relatively) Small set of inputs.
- EW observables are (in general) extremely well measured quantities.

The difference between observables and inputs is somewhat arbitrary.

Our set of inputs is given by the set of most precise observables.

parameter	measurement	full EWK fit	
		without m_H	with m_H
M_H [GeV]	125.09 ± 0.15	91 ± 19	125.09 ± 0.15
M_W [GeV]	80.380 ± 0.013	80.374 ± 0.01	80.360 ± 0.006
Γ_W [GeV]	2.085 ± 0.042	2.092 ± 0.001	2.091 ± 0.001
m_t [GeV]	172.9 ± 0.5	172.9 ± 0.5	173.1 ± 0.5
$\sin^2 heta_{ ext{eff}}^l$	0.2314 ± 0.00023	0.2314 ± 0.00009	0.23152 ± 0.00006
M_Z [GeV]	91.188 ± 0.002	91.188 ± 0.002	91.188 ± 0.002
$\sigma_{ m had}^0$ [nb]	41.54 ± 0.037	41.482 ± 0.015	41.483 ± 0.015
Γ_Z [GeV]	2.495 ± 0.002	2.495 ± 0.001	2.495 ± 0.001
A_c	0.67 ± 0.027	0.6683 ± 0.0003	0.6679 ± 0.0002
A_b	0.923 ± 0.02	0.9347 ± 0.00006	0.93462 ± 0.00004
A_l (SLD)	0.1513 ± 0.00207	0.14797 ± 0.00073	0.14707 ± 0.00044
A_l (LEP)	0.1465 ± 0.0033	0.14797 ± 0.00073	0.14707 ± 0.00044
$A^l_{ m FB}$	0.0171 ± 0.001	0.01642 ± 0.00016	0.01622 ± 0.0001
$A^c_{ m FB}$	0.0707 ± 0.0035	0.0742 ± 0.0004	0.0737 ± 0.0002
$A^b_{ m FB}$	0.0992 ± 0.0016	0.1037 ± 0.0005	0.1031 ± 0.0003
R_l^0	20.767 ± 0.025	20.747 ± 0.018	20.744 ± 0.018
R_c^0	0.1721 ± 0.003	0.17226 ± 0.00008	0.17225 ± 0.00008
R_b^0	0.21629 ± 0.00066	0.2158 ± 0.00011	0.21581 ± 0.00011
$\Delta \alpha^{(5)}_{ m had} \ [10^{-5}]$	2760 ± 9	0.02761 ± 9	2757 ± 9
$\alpha_s(M_Z)$	0.1181 ± 0.0011	0.1198 ± 0.003	0.1197 ± 0.003

Observables

- W mass and width Effective EW sine Z pole observables:
- Z width
- Hadronic cross section
- LR and FB asymmetries
- Ratios of partial Γ_z

J. Erler and M. Schott Prog.Part.Nucl.Phys. 106 (2019) 68-119 using GFitter J. Haller et al., Eur. Phys. J. C78, 675 (2018)

Introduction

Any inconsistency in EWPO could be an indication of NP

How can we systematically look for new physics?

Assume the SM is low energy limit of an EFT

The theory is renormalizable order by order in powers of Λ

We consider only Dimension-6 operators

We use EWPO to study the effects of NLO corrections on SMEFT

EWPO vs SMEFT

Induced effective couplings

$$L \equiv 2M_Z \sqrt{\sqrt{2}G_\mu Z_\mu} \left[g_L^{Zq} + \left(\delta g_L^{Zq} \right) \overline{q} \gamma_\mu q + 2M_Z \sqrt{\sqrt{2}G_\mu Z_\mu} \left[g_R^{Zu} + \left(\delta g_R^{Zu} \right) \overline{u}_R \gamma_\mu u_R \right] \right. \\ \left. + 2M_Z \sqrt{\sqrt{2}G_\mu Z_\mu} \left[g_R^{Zd} + \left(\delta g_R^{Zd} \right) \overline{d}_R \gamma_\mu d_R + 2M_Z \sqrt{\sqrt{2}G_\mu Z_\mu} \left[g_L^{Zl} + \left(\delta g_L^{Zl} \right) \overline{l} \gamma_\mu l \right] \right. \\ \left. + 2M_Z \sqrt{\sqrt{2}G_\mu Z_\mu} \left[g_R^{Ze} + \left(\delta g_R^{Ze} \right) \overline{e}_R \gamma_\mu e_R + 2M_Z \sqrt{\sqrt{2}G_\mu} \left(\delta g_R^{Z\nu} \right) \overline{\nu}_R \gamma_\mu \nu_R \right. \\ \left. + \frac{\overline{g}_2}{\sqrt{2}} \left\{ W_\mu \left[(1 + \left(\delta g_L^{Wq} \right) \overline{u}_L \gamma_\mu d_L + \left(\delta g_R^{Wq} \right) \overline{u}_R \gamma_\mu d_R \right] \right. \\ \left. + W_\mu \left[(1 + \left(\delta g_L^{Wq} \right) \overline{\nu}_L \gamma_\mu e_L + \left(\delta g_R^{Wq} \right) \overline{\nu}_R \gamma_\mu e_R \right] + h.c. \right\}.$$

Do not interfere with SM

$$\begin{split} \delta g_L^{Wq} \ &= \ \delta g_L^{Zu} - \delta g_L^{Zd} \\ \delta g_L^{Wl} \ &= \ \delta g_L^{Z\nu} - \delta g_L^{Ze} \,. \end{split}$$

Not independent at LO due to SU(2)

7 new parameters (3+2*2)

Only 8 combinations can be probed at a time

$$M_W, g_L^{zu}, g_L^{zd}, g_L^{ze}, g_L^{z\nu}, g_R^{zu}, g_R^{zd}, g_R^{ze}$$

At LO effective couplings depend on (Warsaw basis)

\mathcal{O}_{ll}	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$	$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger}\tau^{a}\phi)W^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi D}$	$\left(\phi^{\dagger}D^{\mu}\phi\right)^{*}\left(\phi^{\dagger}D_{\mu}\phi ight)$
$\mathcal{O}_{\phi e}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{e}_{R}\gamma^{\mu}e_{R})$	$\mathcal{O}_{\phi u}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{u}_{R}\gamma^{\mu}u_{R})$	$\mathcal{O}_{\phi d}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{d}_{R}\gamma^{\mu}d_{R})$
$\mathcal{O}_{\phi q}^{(3)}$	$\left(\phi^{\dagger}i \overleftrightarrow{D}^{a}_{\mu} \phi)(\bar{q}\tau^{a}\gamma^{\mu}q)\right.$	$\mathcal{O}_{\phi q}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\tau^{a}\gamma^{\mu}q)$	$\mathcal{O}_{\phi l}^{(3)}$	$(\phi^{\dagger}i \overleftrightarrow{D}^{a}_{\mu} \phi)(\bar{l}\tau^{a}\gamma^{\mu}l)$
$\mathcal{O}_{\phi l}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{l}\tau^{a}\gamma^{\mu}l)$				

At NLO 10 combinations but 32 operators

EWPO vs SMEFT

$$M_{W}^{2} = \frac{M_{z}^{2}}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_{\mu}M_{z}^{2}}}\right) + \delta M_{W}^{SMEFT}$$

SM Quantum corrections (known) $\Delta r \rightarrow \Delta r(M_Z, G_\mu, \alpha, M_h, m_t, \alpha_s)$

Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J. Usovitsch: arXiv:1906.08815; A. Fritas: arXiv: 1401.2447; M. Awramik, M. Czakon, A. Freitas, and G. Weiglein; arXiv: arXiv:hep-ph/0311148

EFT corrections

Many new operators at NLO

$$\begin{split} \delta M_W^{LO} &= \frac{v^2}{\Lambda^2} \bigg\{ -29.827 \mathcal{C}_{\phi l}^{(3)} + 14.914 \mathcal{C}_{ll} - 27.691 \mathcal{C}_{\phi D} - 57.479 \mathcal{C}_{\phi WB} \bigg\} \\ \delta M_W^{NLO} &= \frac{v^2}{\Lambda^2} \bigg\{ -35.666 \mathcal{C}_{\phi l}^{(3)} + 17.243 \mathcal{C}_{ll} - 30.272 \mathcal{C}_{\phi D} - 64.019 \mathcal{C}_{\phi WB} \\ &- 0.137 \mathcal{C}_{\phi d} - 0.137 \mathcal{C}_{\phi e} - 0.166 \mathcal{C}_{\phi l}^{(1)} - 2.032 \mathcal{C}_{\phi q}^{(1)} + 1.409 \mathcal{C}_{\phi q}^{(3)} + 2.684 \mathcal{C}_{\phi u} \\ &+ 0.438 \mathcal{C}_{lq}^{(3)} - 0.027 \mathcal{C}_{\phi B} - 0.033 \mathcal{C}_{\phi \Box} - 0.035 \mathcal{C}_{\phi W} - 0.902 \mathcal{C}_{uB} - 0.239 \mathcal{C}_{uW} - 0.15 \mathcal{C}_{W} \bigg\} \end{split}$$

Fit to SMEFT operators NLO operators are put to 0

Single parameter fits at 95% CL

Coefficient	LO	NLO
\mathcal{C}_{ll}	[-0.0039, 0.021]	[-0.0044, 0.019]
$\mathcal{C}_{\phi WB}$	[-0.0088, 0.0013]	$\left[-0.0079, 0.0016 ight]$
$\mathcal{C}_{\phi u}$	$\left[-0.072, 0.091 ight]$	$\left[-0.035, 0.084 ight]$
${\cal C}^{(3)}_{\phi q}$	[-0.011, 0.014]	[-0.010, 0.014]
${\cal C}^{(1)}_{\phi q}$	[-0.027, 0.043]	$\left[-0.031, 0.036 ight]$
${\cal C}^{(3)}_{\phi l}$	[-0.012, 0.0029]	[-0.010, 0.0028]
$\mathcal{C}^{(1)}_{\phi l}$	[-0.0043, 0.012]	$\left[-0.0047, 0.012 ight]$
$\mathcal{C}_{\phi e}$	[-0.013, 0.0094]	$\left[-0.013, 0.0080 ight]$
$\mathcal{C}_{\phi D}$	$\left[-0.025, 0.0019 ight]$	$\left[-0.023, 0.0023 ight]$
$\mathcal{C}_{\phi d}$	[-0.16, 0.060]	[-0.13, 0.063]

Marginalized fits at 95% CL

Coefficient	LO	NLO
$\mathcal{C}_{\phi D}$	[-0.034, 0.041]	[-0.039, 0.051]
$\mathcal{C}_{\phi WB}$	[-0.080, 0.0021]	$\left[-0.098, 0.012 ight]$
$\mathcal{C}_{\phi d}$	[-0.81, -0.093]	[-1.07, -0.03]
$\mathcal{C}^{(3)}_{\phi l}$	$\left[-0.025, 0.12\right]$	[-0.039, 0.16]
$\mathcal{C}_{\phi u}$	[-0.12, 0.37]	[-0.21, 0.41]
$\mathcal{C}^{(1)}_{\phi l}$	[-0.0086, 0.036]	[-0.0072, 0.037]
\mathcal{C}_{ll}	$\left[-0.085, 0.035 ight]$	$\left[-0.087, 0.033 ight]$
$\mathcal{C}^{(1)}_{\phi q}$	[-0.060, 0.076]	$\left[-0.095, 0.075 ight]$

Fit to SMEFT operators NLO operators are put to 0

Single parameter fits at 95% CL

Coefficient	LO	NLO
\mathcal{C}_{ll}	$\left[-0.0039, 0.021 ight]$	[-0.0044, 0.019]
$\mathcal{C}_{\phi WB}$	[-0.0088, 0.0013]	$\left[-0.0079, 0.0016 ight]$
$\mathcal{C}_{\phi u}$	$\left[-0.072, 0.091 ight]$	$\left[-0.035, 0.084 ight]$
$\mathcal{C}^{(3)}_{\phi q}$	[-0.011, 0.014]	[-0.010, 0.014]
$\mathcal{C}^{(1)}_{\phi q}$	$\left[-0.027, 0.043 ight]$	$\left[-0.031, 0.036 ight]$
${\cal C}^{(3)}_{\phi l}$	[-0.012, 0.0029]	$\left[-0.010, 0.0028 ight]$
${\cal C}_{\phi l}^{(1)}$	[-0.0043, 0.012]	$\left[-0.0047, 0.012 ight]$
$\mathcal{C}_{\phi e}$	$\left[-0.013, 0.0094 ight]$	[-0.013, 0.0080]
$\mathcal{C}_{\phi D}$	[-0.925, 0.0019]	$\left[-0.023, 0.0023\right]$
$\mathcal{C}_{\phi d}$	[-0.16, 0.060]	[-0.13, 0.063]

Marginalized fits at 95% CL

	-	
Coefficient	LO	NLO
$\mathcal{C}_{\phi D}$	[-0.034, 0.041]	[-0.039, 0.051]
$\mathcal{C}_{\phi WB}$	[-0.080, 0.0021]	$\left[-0.098, 0.012 ight]$
$\mathcal{C}_{\phi d}$	[-0.81, -0.093]	[-1.07, -0.03]
$\mathcal{C}^{(3)}_{\phi l}$	[-0.025, 0.12]	[-0.039, 0.16]
$\mathcal{C}_{\phi u}$	[-0.12, 0.37]	[-0.21, 0.41]
$\mathcal{C}_{\phi l}^{(1)}$	[-0.0086, 0.036]	[-0.0072, 0.037]
\mathcal{C}_{ll}	[-0.085, 0.035]	$\left[-0.087, 0.033 ight]$
$\mathcal{C}^{(1)}_{\phi q}$	[-0.060, 0.076]	$\left[-0.095, 0.075 ight]$

0 in the marginalized fit

EWPO vs SMEFT

Result of the fit to LEP $\Lambda = I \text{ TeV}$ C 0.500 0.100 Sing@LO 0.050 Sing@NLO Marg@LO Marg@NLO 0.010 0.005 $C_{\phi |}^{(3)}$ $C_{\phi |}^{(1)}$ $C_{\phi q}^{(1)}$ $C_{\phi \text{WB}}$ $C_{\phi \mathrm{u}}$ C_{\parallel} $C_{\phi \mathsf{D}}$ $C_{\phi \mathrm{d}}$

NLO corrections have different effects depend on how the fit is done

EWPO vs SMEFT

EWPO vs SMEFT

Large (up to ~30%) corrections

EWPO vs SMEFT

Marginalized fit LEP vs ILC vs FCC-ee

arXiv:1809.01830v3; arXiv:1908.11299

Similar behavior (better reach)

EWPO vs SMEFT

Size of NLO corrections at LEP, ILC and Fcc

 Δ_{NLO} at ILC is smaller due to polarized beams

The Higgs sector

- •EWPO are sensitive to modifications of the Higgs couplings (w.r.t. SM) only when NLO corrections are considered.
- In general, EWPO cannot compete with the direct measurements of the Higgs couplings at LHC.
- •One exception is the Higgs trilinear, since its direct measurement at LHC is hindered by a very small cross-section

In order to study the Higgs trilinear is convenient to consider a general anomalous coupling instead of a proper EFT

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3$$

G. Degrassi, PPG, F. Maltoni, D. Pagani, JHEP 1612 (2016) 080 M. McCullough Phys. Rev. D90 (2014), no. 1 015001

EWPO vs λ₃

Best limits obtained in combination with single Higgs processes.

EWPO vs λ_3

From Run I data

- ATLAS and CMS: $\mathcal{O}(\pm (15 20))$
- Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
- Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$

An update of this result is coming G. Degrassi, B. Di Micco, PPG, E. Rossi

- I have presented a calculation of the complete NLO EW and QCD corrections to the EWPO in the SMEFT.
- and used it to test their effects on the EFT fits.
- The size of the NLO corrections seems to depend more on the details of the fit rather than the precision of the measurement.
- Tread carefully!
- EWPO can also be useful to help constrain the Higgs trilinear. New results are coming!