

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- International Development Team (IDT)
- Civil engineering
- Summary

ILC250 accelerator facility

		Item	Parameters
e- Main Linac	Same -	C.M. Energy	250 GeV
		Length	20km
e+ Source		Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹
Beam delivery system (BDS)		Repetition	5 Hz
	Physics Detectors	Beam Pulse Period	0.73 ms
	- Source	Beam Current	5.8 mA (in pulse)
	e+ Main Liinac	Beam size (y) at FF	7.7 nm@250GeV
Damping Ring	^{cal} 20.5 km	SRF Cavity G. Q ₀	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰
Key Technologies	s		
damping ring few GeV few GeV few GeV few CeV few CeV	blogy final focus	8,000 SRF cavities wit	ll be used.

2

Main advantages

- A linear accelerator is more advantageous for accelerating electron and/or positron beams to higher energies.
- The spin of the electron and/or positron beam can be maintained during the acceleration and collision. This can help significantly improve measurement precision.
- The small surface resistance of the SRF accelerating structure (cavity) made of Nb enables the efficient power transfer from the AC power source to the beam.
- Further energy efficiency improvements are considered as part of the of Green ILC concept, which aims to establish a sustainable laboratory.

Circulating beam loses energy by synchrotron radiation. Linear collider can extend its collision energy by longer tunnel/ higher gradient.

ILC machine parameters

Π

	ILC	electron/positron	ILC250		
Beam Energy		GeV	125 (e-) and 125 (e+)		2/s]
	Peak Luminosity (10^34)	cm-2 s-1	1.35		t /cm^2
	Int. Luminosity	ab-1/yr	0.24* * 5,000-hour operation at peak luminos	ity	[x10^3
	Beam dE/E at IP		0.188% (e-), 0.150% (e+)		nosity
	Transv. Beam sizes at IP x/y	nm	515/7.66		k Lumi
	Rms bunch length /	cm	0.03 (σ _z)		Pea
	beta*	mm	bx*=13mm, by*=0.41mm		
	Crossing angle	mrad	14		
	Rep./Rev. frequency	Hz	5		0.7
	Bunch spacing	ns	554		
	# of bunches		1,312		
	Length/Circumference	km	20.5		
	Facility site power	MW	111		_
	Cost (value) range	\$B US	~5 (tunnel and accelerator)		
	Timescale till operations	years	(~1) + 4(prep.) + 9(construction)		

Potential for upgrades

The ILC can be upgraded to higher energy and luminosity.

			Z-Pole [4]			Higgs [2,5]		500GeV [1*]		TeV [1*]	
			Baseline	Lum. Up	Baseline	Lum. Up	L Up.10Hz	Baseline	Lum. Up	case B	
Center-of-Mass Energy	E _{CM}	GeV	91.2	91.2	250	250	250	500	500	1000	Energy
Beam Energy	E _{beam}	GeV	45.6	45.6	125	125	125	250	250	500	
Collision rate	f	Hz	3.7	3.7	5	5	10	5	5	4	
Pluse interval in electron main linac		ms	135	135	200	200	100	200	200	200	
Number of bunches	n _b		1312	2625	1312	2625	2625	1312	2625	2450	
Bunch population	Ν	10 ¹⁰	2	2	2	2	2	2	2	1.737	
Bunch separation	$\Delta t_{ m b}$	ns	554	554	554	366	366	554	366	366	
Beam current		mA	5.79	5.79	5.79	8.75	8.75	5.79	8.75	7.60	
Average beam power at IP (2 beams)	\mathbf{P}_{B}	MW	1.42	2.84	5.26	10.5	21.0	10.5	21.0	27.3	
RMS bunch length at ML & IP	σz	mm	0.41	0.41	0.30	0.30	0.30	0.30	0.30	0.225	
Emittance at IP (x)	γe [*] ∗	μm	6.2	6.2	5.0	5.0	5.0	10.0	10.0	10.0	
Emittance at IP (y)	γe [*] y	nm	48.5	48.5	35.0	35.0	35.0	35.0	35.0	30.0	
Beam size at IP (x)	σ^*_{\times}	μm	1.118	1.118	0.515	0.515	0.515	0.474	0.474	0.335	
Beam size at IP (y)	$\sigma^*_{\scriptscriptstyle Y}$	nm	14.56	14.56	7.66	7.66	7.66	5.86	5.86	2.66	
_uminosity	L	10 ³⁴ /cm ² /s	0.205	0.410	1.35	2.70	5.40	1.79	3.60	5.11	Lumi.
Luminosity enhancement factor	HD		2.16	2.16	2.55	2.55	2.55	2.38	2.39	1.93	
Luminosity at top 1%	$L_{0.01}/L$	%	99.0	99.0	74	74	74	58	58	45	
Number of beamstrahlung photons	n _g		0.841	0.841	1.91	1.91	1.91	1.82	1.82	2.05	
Beamstrahlung energy loss	δ_{BS}	%	0.157	0.157	2.62	2.62	2.62	4.5	4.5	10.5	
AC power [6]	Psite	MW			111	138	198	173	215	300	
Site length	Lsite	km	20.5	20.5	20.5	20.5	20.5	31	31	40	

5

Shin MICHIZONO International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- International Development Team (IDT)
- Civil engineering
- Summary

Area systems of the ILC

Beam sources -electron/positron-

Electron driven positron source

Extra 3GeV linac is used for the positron generation. High energy electrons are not necessary. (Electron independent commissioning is possible.

125 GeV e-, 230 m long undulator @ILC

 $\wedge \wedge$

CEPC workshop ILC acc.

Nano-beam R&D at ATF2

ROYAL HOLLOWAY

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

Institute of High Energy Physics

Chinese Academy of Sciences

東京大学 SLAC NATIONAL ACCELERATOR LABORATORY

‡ Fermilab

ATF2 Goal : **37** nm \rightarrow ILC **7.7** nm (ILC250); achieved **41** nm (2016)

Goal 2: Develop the position stabilization for the ILC collision

FB latency 133 nsec achieved (target: < 366 nsec)</p>

UNIVERSITY OF

DXFORD

D

Laboratoire d'Annecy-le-Vieux

de Physique des Particules

DE L'ACCÉLÉRATEUR L I N É A I R E

FONT* Bunch train feedback at final focus

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- International Development Team (IDT)
- Civil engineering
- Summary

Matured SRF technologies

CEPC workshop ILC acc.

Worldwide large scale SRF accelerators

ILC Cost-Reduction R&D in US-Japan Cooperation

international development learn

Based on recent advances in technologies;

• Nb material/sheet preparation

- w/ optimum Nb purity and clean surface

• Surface treatments for high-Q and high-G

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- International Development Team (IDT)
 - Civil engineering
 - Summary

International Development Team (IDT)

ILC International Development Team

Executive Board

Americas Liaison Andrew Lankford (UC Irvine) Working Group 2 Chair Shinichiro Michizono (KEK) Working Group 3 Chair Hitoshi Murayama (UC Berkeley/U. Tokyo) Executive Board Chair and Working Group 1 Chair Tatsuya Nakada (EPFL) KEK Liaison Yasuhiro Okada (KEK) Europe Liaison Steinar Stapnes (CERN) Asia-Pacific Liaison Geoffrey Taylor (U. Melbourne)

IDT: to prepare for smooth transition to the ILC Pre-lab

- Prepare a proposal for the organization and governance of the ILC Pre-Lab
- Prepare the work and deliverables of the ILC Prelaboratory and workout a scenario for contributions with national and regional partners

Working Group 1 Pre-Lab Setup Working Group 2 Accelerator Working Group 3 Physics & Detectors

Accelerator activities at ILC Pre-lab phase

Technical preparations & SRF R&D for cost reduction [shared across regions]

- SRF performance R&D, quality testing of a large number of cavities (~100), fabrication and shipping of cryomodules from North America and Europe (for validating shipping) **Technical preparation**
- Positron source final design and verification
- Nanobeams (ATF3 and related): Interaction region: beam focus, control; and Damping ring: fast kicker, feedback
- Beam dump: system design, beam window, cooling water circulation
- Other technical developments considered performance critical

Final technical design and documentation [central office in Japan with a support from other labs]

Engineering design and documentation, WBS

Review office

- Cost confirmation/estimates, tender and purchase preparation, transport planning, mass-production planning and QA plans, schedule follow up and construction schedule preparation
- Site planning including environmental studies, CE, safety and infrastructure (see below for details)

Engineering Design Report (EDR)

Planning and preparation of Hub lab.

Resource follow up and planning (including human resources)

Preparation and planning of deliverables [distributed across regions coordinated by the central office]

- Prototyping and qualification in local industries and laboratories, from SRF production lines to individual WBS items
- Local infrastructure development including preparation for the construction phase (including Hub.Lab)
- Financial follow up, planning and strategies for these activities

Civil engineering, local infrastructure and site [mainly by the Japanese institutions]

- Engineering design including cost confirmation/estimate
- Environmental impact assessment and land access
- Specification update of the underground areas including the experimental hall
- Specification update for the surface building for technical scientific and administrative needs

Civil engineering

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- International Development Team (IDT)
- Civil engineering
- Summary

Civil Engineering related Schedule for ILC-250GeV

250GeV

References; (1) TDR, (2) Recommendations on ILC Project Implementation, 2019.

Geological Surveys for ILC: Kitakami Mountains

Scale of the ILC-250GeV

Laser Straight Section

- BDS: "laser straight" in vertical
- ML: Cryomodule will be aligned to the geoid.

 ILC optics DECK has been updated to incorporate corrections for geoid and straight sections around the IP.

Asymmetric straight sections

- The e- side is longer to include undulator and dog-leg.
- If e+ and e- MLs are at the same altitude, the IP is tilted by 0.1 mrad.
- If e- ML is placed 0.6 m higher than e+, the IP has no tilt and BDSs are symmetrically sloped to the IP.

Main Linac (ML) tunnel

- 66 kV distribution cables
- Colling water pipes
- Fan Coil Units
- Low power and signal cables
- RF klystrons and modulators
 - **Electric** Power Stations

- 15 km in (e+e-) total
- follow the geoid in vertical
- Kamaboko 9.5m X 5.5m
- 1.5m central radiation shield
- Further optimization will be done.

- ML Cryomodules
- RTML
- Low power and signal cables

N.Terunuma, AWLC2020

CEPC workshop ILC acc.

Damping Ring

international development learn

Circumference: 3.2kmStart with two rings

N.Terunuma, AWLC2020

Arc section: single tunnel, no central shield.
 Straight section: Kamaboko with a central shield (3.5m in TDR).

Interaction Point (IP)

N.Terunuma, AWLC2020

Cavern for Main Beam Dump

Three big caverns

- Two main beam dumps
- e- dump for undulator, low energy collision (5 x 5 Hz)
- The main beam dump has been designed for 1 TeV collisions.
 - 5 m thick concrete shield in all directions
 - 17 MW power cooling (wider utility hall)
 - ¼ volume of detector hall
 - The civil engineering design is updating with experts from Industry (AAA).

Shin MICHIZONO

International Development Team (IDT) WG2/ KEK

- ILC250 accelerator overview
- ILC area systems
 - Sources
 - Nano-beam
 - SRF
- International Development Team (IDT)
- Civil engineering
- Summary

Summary

- ILC250 accelerator is 20 km long e-/e+ collider for the Higgs factory.
- The ILC is upgradable in energy and luminosity.
- *Key technologies at the ILC are superconducting rf (SRF) and nano-beam.*
 - *SRF* technology has been widely adopted at XFELs such as European XFEL.
 - Nano-beam technology has been demonstrated at ATF hosted by KEK
- We assume 4-year preparation and 9-year construction.(now we are at pre-preparation phase (IDT))
- Preparation phase activities are
 - Technical preparation
 - Final engineering design
 - Planning and preparation of Hub lab.
 - Human resources for ILC construction ...

Thank you for your attention

