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An Interesting Model

The 2 Higgs Double Model
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A simple extension of the SM

We want to contextualize the capability of CEPC under a Beyond SM
We use the 2HDM

There is a variant that links h77 coupling with Barion Assymetry in the Universe (BAU)
[Phys.Rev.D 96 (2017) 11, 115034, Phys.Lett.B 762 (2016) 315-320]

The 2HDM changes the scalar content [Front.Phys. 80 (2000) 1-404]:
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Also, mj, < my. So that h is the SM-like scalar
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A simple extension of the SM

Since we have two scalar doublets,
Ly = —ZYMR(IH — ZYQERQ)Q + h.c.
The interaction with h can be calculated [Phys. Rept. 516, 1-102 (2012)],

mr _ ) _
EYh = *T (Re[yT]TT + Zlm[y7]7757—) h

yr =sin(f — a) + CO\S/%B??;O‘) (v1Y2 — vaY7)

tan 8 = vg/v1 (Notice that relation above is written in the mass basis of leptons)
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It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L =YsTTh +iYpTysTh

In the SM General
p=0,Yg="r L = 7= (Rely,|7Tr + ilm[y, |7ys7) h
Or
L ="c77h L = By, | (cos ATT + isin ATys7) h
Notice

Im[y;] =0 (sinA =0) and |y;| =1 —-SM
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75 violates Parity

Also, if Im[y,] and Re[y,] # 0 — Parity (and CP) is not conserved:
Pr(t,x)P = nvyo7(t, —x)
PTysTP = [n*Thovs707m = —TsT
The ~5 introduces the — sign.
Which does not occur for the pure scalar term 77
And we cannot simply fix with b — —h transformation if Im[y,] and Re[y,]| # 0.

Moreover, the presence of the imaginary term allows the presence physical CP phases
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Im[y,] controls BAU

It was shown [Phys.Rev.D 96 (2017) 11, 115034]

Taking (ignoring the e sector for simplicity)
0 0 0 0
Y1 = and Yy =
! (TY32 Y33> 2 <Y32 Y33>
2m

The Jarskog Invariant is Im[J4] = —Im[r|Y3s|?] = mlm[gﬁ]

L

In this model Im[.J4] controls the CPV source term responsible for BAU
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Im[y,] controls BAU

The 3 Sakarov Conditions are:

1) Baryon number non-conserving
Present in the SM (Eletroweak Sphaleron)
2) Out of Equilibrium dynamics

Not Present in the SM but can be made possible in extension of its scalar
sector (as with 2HDM) through first order Eletroweak phase transitions.

3) C and CP violation
Can be obtained by CPV in Leptonic Yukawa sector: Im[.J4] # 0.
Since Im[J4] < Im[y,] BAU— |Im[y;]| > 0.233 [Phys.Rev.D 96 (2017) 11, 115034].
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Angular distribution

Taking the reaction ete™ — ZOh(— 7177) (7 = X*v)
How to extract the information on ¥, 7

For |y.| — Total number of events.

How about A?

The spin of the 7 contains the information.

Since Parity: p — —p but s — s: p - s are specially sensitive to A value.
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Angular distribution

Imagine we could measure the momentum p+ and the spin sy of each 7%

Angular distribution are the key.

Mo P o T [ (p_ 4y ) (14358 ) O (p, = me ) (14954, O

At each 74's CM s = (0,s+). And one can show that,

ggfggﬂ = Fhi” [1 + cosfs_cosfs, —sinf,_sinf,, sin(2A + ¢s, — ¢s_ )]

The Azimuth angle ¢, difference of the spins correlate directly with Al
But this does not work for helicity eigenstates, since ¢s, = 0...
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Angular distribution
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Angular distribution

There are many observables that carry part of the information of the decay.

Two historacally relevants:

(i) The azimuth angle difference of the neutrino momentum with respect
to 7~ direction (d¢)

This works great for 7 — 7v but not for 7 — pv
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Angular distribution

There are many observables that carry part of the information of the decay.

Two historacally relevants:

(i) The azimuth angle difference of the neutrino momentum with respect
to 7~ direction (d¢)

This works great for 7 — 7v but not for 7 — pv
(ii) Acoplanarity (¢*) of the non-leptonic T decays

@* existis only if 7 — v X (— x1 + x2)
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Since T decays very fast, we can use narrow width approximation

Mh—)uﬁX‘*‘X‘ ~ Mh—>7’7’ X MT“'—)E—X‘*‘ X MT‘—)I/-,—X—

The 7 decay lagrangian is,

L x Jf?’y“PLVT — M-, x- X Jlf(ﬂT'y“PLuy
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Angular distribution

We can write (After 7 spin sum)

Mixrx- o [ad™ Py (p_+me) 0 (p, —me) )5 Py |

O = cos A + isin A~z

It can be shown that [Nuclear Physics B236 (1984) 16-34]

M2 o T [(p_ - me ) (1+95¢) O (p, =) (1= 35¢,) O
Compare with, 7 oc (m2g°F — pﬂpf)(zuﬁp,, -J = 2p5J2) (If Im[J] = 0)

|MS+5-|2 o Tr [(p_ + mT> (1 + 757§,) (@) (p+ - mT) (1 + 75$+) 6]
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Angular distribution

In its correspondents 7 rest frame r = (0, r)

Hence: It acts as an effective spin.

For 7 — 7wv: r « p,<— That is why p, is a good observable for 7 — 7!
For 7 — p(— mmo)v: r x m-(Er — Ery) (Pr — Pro) + %m,%p,,

Notice: This requires the reconstruction of the 7+ CM

17 /30



We can reconstruct p,+

At a eTe™ collider we can reconstruct the h momentum:

18 /30



We can reconstruct p,+

At a eTe™ collider we can reconstruct the h momentum:

We can use the Z° — 717, ¢t ¢,

18 /30



We can reconstruct p,+

At a eTe™ collider we can reconstruct the h momentum:
We can use the Z° — 717, ¢t ¢,

We also have information of 7+, 7% hence we measure py+ + py-.

18 /30



We can reconstruct p,+

At a eTe™ collider we can reconstruct the h momentum:
We can use the Z° — 717, ¢t ¢,
We also have information of 7+, 7% hence we measure py+ + py-.

The only missing pieces are p, and py — 2 absolute values and 4 angles.

18 /30



We can reconstruct p,+

At a eTe™ collider we can reconstruct the h momentum:

We can use the Z° — 717, ¢t ¢,

We also have information of 77, 7% hence we measure py+ + px-.

The only missing pieces are p, and py — 2 absolute values and 4 angles.
Assuming p?, ~ mZ (from narrow width approximation)

And conservation of energy momentum: pp, = p, + pr +px+ + Px-

18 /30
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At a eTe™ collider we can reconstruct the h momentum:

We can use the Z° — 717, ¢t ¢,

We also have information of 77, 7% hence we measure py+ + px-.

The only missing pieces are p, and py — 2 absolute values and 4 angles.
Assuming p?, ~ mZ (from narrow width approximation)

And conservation of energy momentum: pp, = p, + pr +px+ + Px-

We can almost solve all the variables: There is a two-fold ambiguity

18 /30
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We need to use the impact parameter!

In de Higgs CM, the only directional information comes from px+ and px-
Hence, it is blind to the direction of p.—- component in the direction px+ X px-

Nevertheless, it is possible to measure the impact parameter
[Phys.Lett. B313 (1993) 458-460,Eur.Phys.J.C 77, no.10, 697 (2017)]

Which is the minimum distance of the trajectory of the charged particle
and the 7 creation point

This gives an extra information that can be incorporated to reconstruct p.+
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We have a bunch of events

Of course this comes with a price: Not every event can be completely reconstructed
There is ~ 10% ete™ — Zh events [Arxiv:1811.10545]
Br(Z —visible)~ 80% and Br(h — 77)~ 6.32% [PTEP 2020, no.8, 083C01 (2020)]
10.8%: T — wv 25%: T — pv
(7 F,77)

~ 175 events

Expected for a L=5.6ab™! e*e™ collider after selection [Phys.Rev.D 98 (2018) 1, 013007]
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Of course this comes with a price: Not every event can be completely reconstructed
There is ~ 105 ete™ — Zh events [Arxiv:1811.10545]

Br(Z —visible)~ 80% and Br(h — 77)~ 6.32% [PTEP 2020, no.8, 083C01 (2020)]

10.8%: 7 — 7w 25%: T — pv
(7F,77) (7, p)
~ 175 events ~ 810 events

Expected for a L=5.6ab™! e*e™ collider after selection [Phys.Rev.D 98 (2018) 1, 013007]
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We have a bunch of events

Of course this comes with a price: Not every event can be completely reconstructed
There is ~ 105 ete™ — Zh events [Arxiv:1811.10545]

Br(Z —visible)~ 80% and Br(h — 77)~ 6.32% [PTEP 2020, no.8, 083C01 (2020)]

10.8%: 7 — 7w 25%: T — pv
(7F,77) (7, p) (pt,p7)
~ 175 events =~ 810 events ~ 940 events

Expected for a L=5.6ab™! e*e™ collider after selection [Phys.Rev.D 98 (2018) 1, 013007]
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Power of CEPC in Measuring v

Using the h — 777~ Channel
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CEPC is very precise!
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CEPC is very precise!
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CEPC [Eur.Phys.J.5T228 p261 (2019)]

—— FCC [arXiv:1811.10545]

LHC at 45(20) fb~! at 7(8) TeV
—— LHC at 3 ab~! [PLB789 p332 (2019)]
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CEPC is very precise!
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Thanks for your attention
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(a) (b)

Fig. 2. Plots demonstrating the tau flight vector, the track trajectory and the point of closest approach for three cases: (a)
the collision point O is inside the track curvature, (b) O is outside the track curvature with two intersection points, (c) O is
outside the track curvature with no intersection.

From: Eur.Phys.J.C 77, no.10, 697 (2017)
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From: Physics Letters B 313 (1993 )458-460

28 /30



backup

TABLE II. Selection cuts [see text for details; (energies, momenta, and masses) in GeV/c(®?)], signal
selection efficiencies ¢ (in %), and number of expected background events (BG) at various stages of the
selection in the three selection channels e, , ¢. Event numbers are scaled to the 2 ab™! of 250 GeV data of
the “H20-staged” running scenario.

leptonic i hadronic preselection B k g

event property i €e €u BGiep € BGhaa
100 100 142 M 100 142M
chg. PFOs 457 91 93 101M =8 98 957 M
Z 1l candidate > 1 88 % 1.03 M
isolated prongs >2 91 458 M
opp. chgd. prongs 84 &7 903 k
min. prong score > 08
impact par. error < 25um 76 79 491k < 25um
extra cone energy 72 7 438 k _
mz 60 — 160 ete —>ZZ,Z—>TT,Z—>€€
Mrocoil 50 = 160
7 decay mode 63 65
full selection Z s ee
- ete™ = Zh,Z — 71, h — bb
good 777 fit 57 112k ) Y
mer 100 —+ 140 16 618 100 — 140
event pr <5 43 309 <20
Mrecoil >120 42 252 > 100
mz 80 - 105 11 186 80 -+ 115 e+ef — Zh)Z — 7‘7‘7h — ge
| cosz| <0.96 40 168 <096
event p, <40 40 144 <40
| €08 0P |min < 0.95 40 140 <095
Sample purity (%) 19 26

From: Phys.Rev.D 98 (2018) 1, 013007
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Vo O h(@]@1)2 + Daa(@]@2)? + Ag(@] @) (@] 0,)

+ [325(@]82)2 + A6(@]@1)2(D[02) + Ar(@[02)2(0[02) + hc |

m%Lh = 1}2()\5 + 4)\3) + 41)%)\1 + 4’1]%)\2 + \/[()\5 — 4)\3)(1)% — U%) + 41}%)\1 — 41)%)\2]2 + 16’1]11}2()\5 — 4)\3)
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