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We want to contextualize the capability of CEPC under a Beyond SM

We use the 2HDM

There is a variant that links hττ coupling with Barion Assymetry in the Universe (BAU)
[Phys.Rev.D 96 (2017) 11, 115034, Phys.Lett.B 762 (2016) 315-320]

The 2HDM changes the scalar content [Front.Phys. 80 (2000) 1-404]:

Φ =

(
φ+

φ0

)
−→ Φ1 =

(
φ+

1

φ0
1

)
and Φ2 =

(
φ+

2

φ0
2

)
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2

h = − sinαφ0
1 + cosαφ0

2

where α is the angle diagonalizing the neutral scalar mass matrix,

tan 2α = 4v1v2(λ5−4λ3)
(λ5−4λ3)(v22−v21)+4v21λ1−4v22λ2

Also, mh < mH . So that h is the SM-like scalar
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Since we have two scalar doublets,

LY = −LY1`RΦ1 − LY2`RΦ2 + h.c.

The interaction with h can be calculated [Phys. Rept. 516, 1-102 (2012)],

LYh = −mτ

v
(Re[yτ ]ττ + iIm[yτ ]τγ5τ)h

yτ = sin(β − α) + cos(β−α)√
2mτ

(v1Y2 − v2Y1)

tanβ = v2/v1 (Notice that relation above is written in the mass basis of leptons)

6 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

In the SM

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

In the SM

YP = 0, YS = mτ
v

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

In the SM

YP = 0, YS = mτ
v

L = mτ
v ττh

General

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

In the SM

YP = 0, YS = mτ
v

L = mτ
v ττh

General

L = mτ
v (Re[yτ ]ττ + iIm[yτ ]τγ5τ)h

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

In the SM

YP = 0, YS = mτ
v

L = mτ
v ττh

General

L = mτ
v (Re[yτ ]ττ + iIm[yτ ]τγ5τ)h

Or
L = mτ

v |yτ | (cos ∆ττ + i sin ∆τγ5τ)h

7 / 30



It could be CP-even or CP-odd

One step back... A general Yukawa coupling

L = YSττh+ iYP τγ5τh

In the SM

YP = 0, YS = mτ
v

L = mτ
v ττh

General

L = mτ
v (Re[yτ ]ττ + iIm[yτ ]τγ5τ)h

Or
L = mτ

v |yτ | (cos ∆ττ + i sin ∆τγ5τ)h

Notice
Im[yτ ] = 0 (sin ∆ = 0) and |yτ | = 1 →SM
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Also, if Im[yτ ] and Re[yτ ] 6= 0 −→ Parity (and CP) is not conserved:

Pτ(t,x)P = ηγ0τ(t,−x)

Pτγ5τP = |η|2τγ0γ5γ0τ = −τγ5τ

The γ5 introduces the − sign.

Which does not occur for the pure scalar term ττ

And we cannot simply fix with h→ −h transformation if Im[yτ ] and Re[yτ ] 6= 0.

Moreover, the presence of the imaginary term allows the presence physical CP phases
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Taking (ignoring the e sector for simplicity)

Y1 =

(
0 0

rY32 Y33

)
and Y2 =

(
0 0
Y32 Y33

)

The Jarskog Invariant is Im[JA] = −Im[r|Y32|2] = 2m2
τ

v2 cos(β−α)
Im[yτ ]

In this model Im[JA] controls the CPV source term responsible for BAU
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Im[yτ ] controls BAU

The 3 Sakarov Conditions are:

1) Baryon number non-conserving

Present in the SM (Eletroweak Sphaleron)

2) Out of Equilibrium dynamics

Not Present in the SM but can be made possible in extension of its scalar
sector (as with 2HDM) through first order Eletroweak phase transitions.

3) C and CP violation

Can be obtained by CPV in Leptonic Yukawa sector: Im[JA] 6= 0.

Since Im[JA] ∝ Im[yτ ] BAU→ |Im[yτ ]| > 0.233 [Phys.Rev.D 96 (2017) 11, 115034].
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Angular distribution

Taking the reaction e+e− → Z0h(→ τ+τ−) (τ± → X±ν)

How to extract the information on yτ?

For |yτ | −→ Total number of events.

How about ∆?

The spin of the τ contains the information.

Since Parity: p→ −p but s→ s: p · s are specially sensitive to ∆ value.
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At each τ±’s CM s± = (0, s±). And one can show that,

dΓh→ττ
dΩ−dΩ+

= 1
Γh→ττ

[
1 + cos θs− cos θs+ − sin θs− sin θs+ sin(2∆ + φs+ − φs−)

]

The Azimuth angle φs± difference of the spins correlate directly with ∆!

But this does not work for helicity eigenstates, since φs± = 0...
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Two historacally relevants:

(i) The azimuth angle difference of the neutrino momentum with respect
to τ− direction (δφ)

This works great for τ → πν but not for τ → ρν

(ii) Acoplanarity (φ∗) of the non-leptonic τ decays

Figure from: Acta Phys.Polon. B 34, 4549-4560 (2003)

14 / 30



Angular distribution

There are many observables that carry part of the information of the decay.

Two historacally relevants:

(i) The azimuth angle difference of the neutrino momentum with respect
to τ− direction (δφ)

This works great for τ → πν but not for τ → ρν

(ii) Acoplanarity (φ∗) of the non-leptonic τ decays

φ∗ existis only if τ → νX(→ x1 + x2)
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Since τ decays very fast, we can use narrow width approximation

Mh→ννX+X− ≈Mh→ττ ×Mτ+→ντX+ ×Mτ−→ντX−

The τ decay lagrangian is,

L ∝ JXµ τγµPLντ −→Mτ−→ντX− ∝ JXµ uτγµPLuν
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Angular distribution

In its correspondents τ rest frame r = (0, r)

Hence: It acts as an effective spin.

For τ → πν: r ∝ pν←− That is why pν is a good observable for τ → πν!

For τ → ρ(→ ππ0)ν: r ∝ mτ (Eπ − Eπ0) (pπ − pπ0) + 1
2m

2
ρpν

Notice: This requires the reconstruction of the τ± CM
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We can use the Z0 → l+l−, q+q−.

We also have information of π+, π0 hence we measure pX+ + pX− .

The only missing pieces are pν and pν → 2 absolute values and 4 angles.

Assuming p2
τ± ≈ m2

τ (from narrow width approximation)

And conservation of energy momentum: ph = pν + pν + pX+ + pX−

We can almost solve all the variables: There is a two-fold ambiguity
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We need to use the impact parameter!

In de Higgs CM, the only directional information comes from pX+ and pX−

Hence, it is blind to the direction of pτ− component in the direction pX+ × pX−

Nevertheless, it is possible to measure the impact parameter
[Phys.Lett. B313 (1993) 458-460,Eur.Phys.J.C 77, no.10, 697 (2017)]

Which is the minimum distance of the trajectory of the charged particle
and the τ creation point

This gives an extra information that can be incorporated to reconstruct pτ±
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Of course this comes with a price: Not every event can be completely reconstructed

There is ≈ 106 e+e− → Zh events [Arxiv:1811.10545]

Br(Z →visible)≈ 80% and Br(h→ ττ)≈ 6.32% [PTEP 2020, no.8, 083C01 (2020)]

10.8%: τ → πν 25%: τ → ρν

(π+, π−)

≈ 175 events

(π, ρ)

≈ 810 events

(ρ+, ρ−)

≈ 940 events

Expected for a L=5.6ab−1 e+e− collider after selection [Phys.Rev.D 98 (2018) 1, 013007]
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Power of CEPC in Measuring yτ

Using the h→ τ+τ− Channel
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Thanks

Thanks for your attention
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From: Eur.Phys.J.C 77, no.10, 697 (2017)
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dmin = `− `·n+

n−·(n+×n−×n+)n− −
`·n−

n+·(n−×n−×n+)n+

From: Physics Letters B 313 (1993 )458-460
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From: Phys.Rev.D 98 (2018) 1, 013007

Bkg

e+e− → ZZ,Z → ττ, Z → ``

e+e− → Zh,Z → ττ, h→ bb

e+e− → Zh,Z → ττ, h→ ``
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VΦ ⊃ 1
2λ1(Φ†1Φ1)2 + 1

2λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+
[

1
2λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)2(Φ†1Φ2) + λ7(Φ†2Φ2)2(Φ†1Φ2) + h.c.

]

m2
H,h = v2(λ5 + 4λ3) + 4v2

1λ1 + 4v2
2λ2 ±

√[
(λ5 − 4λ3)(v2

2 − v2
1) + 4v2

1λ1 − 4v2
2λ2

]2
+ 16v1v2(λ5 − 4λ3)
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