

Search for Long-lived Particles at Future Lepton Colliders

Liang Li and Yulei Zhang, Xiang Chen, Jifeng Hu

Shanghai Jiao Tong University

Long-lived Particles Search

Leave no stone unturned:

- New particles might have non-prompt decays and long lifetime
- Timing information important in detector design
- Energy information complementary
- Charged and neutral signals

Long-lived Particles Search at Hadron Collider

Journal of Physics G: Nuclear and Particle Physics

LHC LLP Community white paper

- arXiv:1903.04497
- 226 pages
- 201 authors
- 104 citations (today)

MAJOR REPORT • OPEN ACCESS

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

To cite this article: Juliette Alimena et al 2020 J. Phys. G: Nucl. Part. Phys. 47 090501

3

Long-lived Particles Search at Lepton Collider

$e^+e^- \rightarrow Zh \rightarrow \nu\bar{\nu} + SS1 + SS2$

Energy: 240 GeV Mass of SS1: 1-50 GeV Mass of SS2: 1-50 GeV

Lepton collider uniqueness

- Clean environment
- Time of flight
- Energy deposition

Preliminary study with outer detector

Long-lived Particles Search at Lepton Collider

Select signal events with muon detector

- $\Delta t = t_{\text{Hit}} r_{\text{Hit}}/c$, R_{out} ~ 6m (CEPC baseline)
- consider 2 non-prompt jets final state (for simplicity) with possible Z-tagging

Dominant background

- *ZH→vvbb*, *vvjj*
- $e^+e^- \rightarrow qq$ (ISR/FSR)

Mass of Two Prompt Jets

- Reconstructed via anti-K_T algorithm (inclusive)
- ISR/FSR included for $e^+e^- \rightarrow qq$
- Background normalized to signal to compare shape

Shower distance of sub-jets

- Reconstructed via anti-K_T algorithm (inclusive)
- Background normalized to signal to compare shape

Time and Energy Distributions

- Energy deposition in muon detector
- Background normalized to signal to compare shape

2D Time and Energy Distributions

- Clear signal presence
- Optimized 2D selections

Z→qq + 2 non-prompt jets channel

	Signal: $Z \to \overline{q}q$	$e^+e^- ightarrow q\overline{q}$	$e^+e^- ightarrow Zh$	Total
# of Events in 5.6 ab^{-1}		2.0×10^{8}	1.0×10^{6}	2.01×10^{8}
# of Events simulated	$\sim 1.3 \times 10^6$	$\sim 0.99 \times 10^7$	$\sim 1.37 \times 10^6$	$\sim 2.87 \times 10^6$
Decay in Muon Detector	134,559	6,516,657	796,596	7,313,253
$\left m_{qq}-m_{Z} ight \leq15~{ m GeV}$	113,723	4,013,875	39,631	4,053,506
$\left m_{qq}^{rec}-m_{h} ight \leq15~{ m GeV}$	104,942	229,703	26,862	256,565
$0.23 \le y_{12} \le 0.72$	93,517	129,546	20,041	149,587
$E_{2j} \ge 30 \text{ GeV}$	69,468	72	16	88
$\min(\Delta T_{j_1}, \Delta T_{j_2}) > 3 \text{ ns}$	68,368	50	11	61
Efficiency	50.80%	0.00077%	0.0014%	0.00083%

Full simulation study

- Large sample required for $e^+e^- \rightarrow qq$ background estimation
- 2D energy and time selections

$Z \rightarrow vv + 2$ non-prompt jets channel

	Signal: $Z \to \overline{\nu} \nu$	$(e^+e^- ightarrow q\overline{q})^*$	$e^+e^- ightarrow Zh$	Total
# of Events in 5.6 ab^{-1}		2.0×10^{8}	1.0×10^{6}	2.01×10^{8}
# of Events simulated	$\sim 1.0 imes 10^6$	$\sim 0.99 \times 10^7$	$\sim 1.37 \times 10^6$	$\sim 2.87 \times 10^6$
Decay in Muon Detector	89,757	6,516,657	796,596	7,313,253
$E_{missing} > 190 \ GeV$	89,437	463,421	6,413	469,834
$n_{rec} < 8$	88,103	281,897	3,901	285,798
$E_{2j} \ge 30 \text{ GeV}$	67,244	0	0	0
$\min(\Delta T_{j_1}, \Delta T_{j_2}) > 3 \text{ ns}$	66,325	0	0	0
Efficiency	73.89%	_	_	_

Full simulation study

- Large sample required for $e^+e^- \rightarrow qq$ background estimation
- Clean signal (no energy from inner detector)
- Cosmic ray background under investigation

Preliminary Expected Sensitivity

Two non-prompt jets results

- Signal scan: 1-50 GeV (assuming same signal efficiency)
- Complementary to LHC, especially at low energy

Muon Detector Recommendation

Sensitivity study related to muon detector optimization

- Timing resolution
- Detector size, number of layers etc.

Timing Resolution Study

Timing Resolution Study

Sensitivity study related to muon detector optimization

- Timing resolution
 - For signals at muon detector, the peak of time delay is around 10 ns, which is much larger than the time resolution range tested (1ps-1ns).
 - We don't expect the effect of time resolution to be significant for LLPs studies with muon detector.

Increase Muon Detector Size

Muon Outer Radius (m)	Expected Limits (BR)		
6	$\sim \! 10^{-4}$		
8	$\sim 5 \times 10^{-5}$		
10	$\sim 4 \times 10^{-5}$		

Sensitivity study related to muon detector optimization

- Detector size, number of layers etc.
 - Current CEPC muon detector geometry size: 4-6m.
 - Increasing detector length would increase signal acceptance and yield better sensitivity.
 - Energy and time information not very sensitive to the number of layers, under investigation.

Summary and Outlook

✓ Preliminary LLPs study done using full simulation samples

- First look at outer detector for lepton colliders
 - Time and energy information with good separation power
 - Detector timing resolution: ~ 1 ns
 - Energy threshold: ~ 30 GeV
 - Inner detector study ongoing
 - More complicated reconstruction with displaced vertex
- Complementary to hadron colliders
 - Low energy signal region
- Further optimization and more thorough understanding of backgrounds needed
 - Looks promising: clean signal with no major backgrounds