The hadronic contribution to $\Delta \alpha$

Massimo Passera INFN Padova

International workshop on the high energy CEPC Shanghai - October 26 2020

$\Delta \alpha$ and the EW fit

The fine-structure constant α is the most precise input of the SM:

α = 1/137.036 999 046 (27) [0.20 ppb] Science 360 (2018) 191 (Cs)

followed by

 $G_F = 1.1663787(6) \ 10^{-5} \ GeV^{-2} \ [0.5 \ ppm] \ PDG2020$ $M_Z = 91.1876(21) \ GeV \ [23 \ ppm] \ PDG2020$

However, the effective $\alpha(q^2)$ entering the cross sections at q^2 energies is

$$\alpha(q^2) = \frac{\alpha}{1 - \Delta\alpha(q^2)} \qquad \Delta\alpha(q^2) = \Delta\alpha_{\rm lep}(q^2) + \Delta\alpha_{\rm had}^{(5)}(q^2) + \Delta\alpha_{\rm top}(q^2)$$

At q²=M_Z², the hadronic contribution induces an error of O(10⁻⁴). Six orders of magnitude in precision lost wrt to α !

- The hadronic contribution cannot be computed perturbatively because of the nonperturbative nature of strong interactions at low energy.
- Using analyticity and unitarity, at q²=M_Z²:

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \frac{M_Z^2}{4\alpha\pi^2} \operatorname{P} \int_{s_{th}}^{\infty} \mathrm{d}s \frac{\sigma_{\rm had}(s)}{M_Z^2 - s}$$

Analysis	$\Delta \alpha^{(5)}_{c}(M_{\pi}^{2}) \times 10^{4}$	$\alpha^{-1}(M_Z^2)$
DUM/710 [51]	275.50 ± 1.04	
HIMNT11 [40]	275.39 ± 1.04 276.26 + 1.38	128.932 ± 0.014 128.944 ± 0.019
FJ17 [47]	277.38 ± 1.19	128.919 ± 0.022
DHMZ17 [54]	276.00 ± 0.94	128.947 ± 0.012
KNT18	276.11 ± 1.11	128.946 ± 0.015
DHMZ19 [37]	276.10 ± 1.00	128.946 ± 0.013
KNT19 [This work]	276.09 ± 1.12	128.946 ± 0.015

Keshavarzi, Nomura Teubner, PRD 2020

The low-energy hadronic cross section

Present $sin^2\theta_{eff}$ world average from all Z-pole measurements at lepton (LEP & SLC) and hadron (Tevatron and LHC) colliders:

 $\sin^2\theta_{\text{eff}} = 0.23151$ (14) Erler and Schott, Prog. Part. Nucl. Phys. 2019

The EW fit prediction for $sin^2\theta_{eff}$ (determined from all other parameters) is in good agreement:

 $\sin^2\theta_{eff} = 0.23152 (4)_{parametric}(4)_{th}$ Keshavarzi, Marciano, MP, Sirlin, PRD 2020 using Gfitter

The parametric error 4 x 10⁻⁵ on $\sin^2\theta_{eff}$ is dominated by the $\Delta \alpha_{had}^{(5)}(Mz^2)$ uncertainty. If future colliders will reach a precision of ~< 1 x 10⁻⁵, then $\Delta \alpha_{had}^{(5)}(Mz^2)$ will have to improve by a factor of >~ 3–4!

How can we improve the precision of $\Delta \alpha_{had}^{(5)}(M_Z^2)$?

- New low-energy data for σ_{had}(s) (CMD-3, SND, KEDR, BESIII, Belle-2, ...). Radiative Corrections to σ_{had}(s) are crucial.
- Direct determination of Δα_{had}⁽⁵⁾(Mz²) measuring the muon asymmetry A^{µµ}_{FB}(s) in the vicinity of the Z pole Patrick Janot, JHEP 2016
- Euclidean split method (Adler function). Needs spacelike offset $\Delta \alpha_{had}^{(5)}(-M_0^2)$ with $M_0 \sim 2$ GeV and pQCD. Fred Jegerlehner, hep-ph/9901386
- Future muon-electron scattering data at the MUonE experiment may help determine the spacelike offset $\Delta \alpha_{had}^{(5)}(-M_0^2)$ (see later)
- Lattice QCD? Lots of work in progress for the hadronic vacuum polarization contribution to the muon g-2.

Muon g-2 $\iff \Delta \alpha$ connection

Marciano, MP, Sirlin 2008 & 2010 Keshavarzi, Marciano, MP, Sirlin 2020

Comparing the SM prediction with the measured muon g-2 value:

$$a_{\mu}^{EXP} = 116592089 (63) \times 10^{-11}$$
BNL E821 $a_{\mu}^{SM} = 116591810 (43) \times 10^{-11}$ Muon g-2 TI $\Delta a_{\mu} = a_{\mu}^{EXP} - a_{\mu}^{SM} = 279 (76) \times 10^{-11}$ 3.7 g

White Paper of the Muon g-2 Theory Initiative: arXiv:2006.04822

3.7 σ

The muon g-2: Hadronic LO contribution

- **Radiative Corrections to** σ (s) are crucial. S. Actis et al, Eur. Phys. J. C66 (2010) 585
- Great progress in lattice QCD results. Recent BMW result with subpercent precision: $a_{\mu}^{HLO} = 7087(53) \times 10^{-11}$. Tension with dispersive evaluations. S. Borsanyi et al. 2002.12347.

- Can Δa_{μ} be due to missing contributions in the hadronic $\sigma(s)$?
- An upward shift of σ (s) also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$.
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} &\to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \Delta \alpha_{\text{had}}^{(5)} &\to \\ b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta \sigma(s) = \epsilon \sigma(s)$$

 ϵ >0, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right] \quad \Longrightarrow$$

How much does the M_H upper bound from the EW fit change when we shift up $\sigma(s)$ by $\Delta\sigma(s)$ [and thus $\Delta\alpha_{had}^{(5)}(M_Z)$] to accommodate Δa_{μ} ?

Marciano, MP, Sirlin, 2008 & 2010

μ

Major update: Higgs discovered, improved EW observables (M_W , sin² θ , M_{top} , ...), updates to σ (s), theory improvements, global fit, ...

Parameter	Input value	Reference	Fit result	Result w/o input value
M _W (GeV)	80.379(12)	[5]	80.359(3)	80.357(4)(5)
M_H (GeV)	125.10(14)	[5]	125.10(14)	94^{+20+6}_{-18-6}
$\Delta lpha_{ m had}^{(5)}(M_Z^2) imes 10^4$	276.1(1.1)	[23]	275.8(1.1)	272.2(3.9)(1.2)
m_t (GeV)	172.9(4)	[5]	173.0(4)	
$\alpha_s(M_Z^2)$	0.1179(10)	[5]	0.1180(7)	
M_Z (GeV)	91.1876(21)	[5]	91.1883(20)	
Γ_Z (GeV)	2.4952(23)	[5]	2.4940(4)	
Γ_W (GeV)	2.085(42)	[5]	2.0903(4)	
$\sigma_{\rm had}^0$ (nb)	41.541(37)	[108]	41.490(4)	
R_1^0	20.767(25)	[108]	20.732(4)	
R_c^0	0.1721(30)	[108]	0.17222(8)	
R_b^0	0.21629(66)	[108]	0.21581(8)	
$\bar{m_c}$ (GeV)	1.27(2)	[5]	1.27(2)	
$\bar{m_b}$ (GeV)	$4.18^{+0.03}_{-0.02}$	[5]	$4.18\substack{+0.03\\-0.02}$	
$A_{ m FB}^{0,l}$	0.0171(10)	[108]	0.01622(7)	
$A_{\rm FB}^{0,c}$	0.0707(35)	[108]	0.0737(2)	
$A_{\rm FB}^{0,b}$	0.0992(16)	[108]	0.1031(2)	
A_{ℓ}	0.1499(18)	[75,108]	0.1471(3)	
A _c	0.670(27)	[108]	0.6679(2)	
A_b	0.923(20)	[108]	0.93462(7)	
$\sin^2 \theta_{\rm eff}^{\rm lep}(Q_{\rm FB})$	0.2324(12)	[108]	0.23152(4)	0.23152(4)(4)
$\sin^2 \theta_{\rm eff}^{\rm lep}$ (Had Coll)	0.23140(23)	[100]	0.23152(4)	0.23152(4)(4)

Keshavarzi, Marciano, MP, Sirlin, PRD 2020 (using Gfitter)

Shifts $\Delta \sigma(s)$ to fix Δa_{μ} are possible, but conflict with the EW fit if they occur above ~1 GeV

Keshavarzi, Marciano, MP, Sirlin, PRD 2020

How large are the required shifts $\Delta \sigma(s)$?

Shifts below 1 GeV conflict with the quoted exp. precision of $\sigma(s)$

Keshavarzi, Marciano, MP, Sirlin, PRD 2020

- Crivellin, Hoferichter, Manzari and Montull, "Hadronic vacuum polarization: (g-2)µ versus global electroweak fits," PRL125 (2020) 9, 091801 [arXiv:2003.04886].
- Eduardo de Rafael, "On Constraints Between Δα_{had}(M_{Z²}) and (g_µ-2)_{HVP}," arXiv:2006.13880.
- Malaescu and Schott, "Impact of correlations between a_µ and α_{QED} on the EW fit", arXiv:2008.08107.

The MUonE project

Spacelike proposal for a_{μ}^{HLO}

 The leading hadronic contribution a_µ^{HLO} computed via the timelike formula:

$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\text{had}}^0(s)$$
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \left(s/m_{\mu}^2\right)}$$

• Alternatively, simply exchanging the x and s integrations:

$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_0^1 dx \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)]$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

Lautrup, Peterman, de Rafael, 1972

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region: a_{μ}^{HLO} can be extracted from scattering data!

M. Passera CEPC Shanghai Oct 26 2020

Carloni Calame, MP, Trentadue, Venanzoni, 2015

- $\Delta \alpha_{had}(t)$ can be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.

Abbiendi, Carloni Calame, Marconi, Matteuzzi, Montagna, Nicrosini, MP, Piccinini, Tenchini, Trentadue, Venanzoni EPJC 2017 - arXiv:1609.08987

- With 150 GeV muons, the high energy region inaccessible to MUonE contributes only 13% of the total a_μ^{HLO} integral. Recently it has been determined via lattice QCD Giusti&Simula and Marinkovic &Cardoso 2019
- Statistics: With CERN's 150 GeV muon beam M2 (1.3 × 10⁷ µ/s), incident on 40 15mm Be targets (total thickness 60cm), 2 years of data taking (2×10⁷ s/yr) → ℒ_{int} ~ 1.5 × 10⁷ nb⁻¹.
- With this \mathscr{L}_{int} we estimate that measuring the shape of d σ /dt we can reach a <u>statistical</u> sensitivity of ~0.3% on a_{μ}^{HLO} , ie ~20 × 10⁻¹¹.
- Systematic effects must be known at ≤ 10ppm!
- Theory: To extract Δα_{had}(t) from MUonE's measurement, the ratio of the SM cross sections in the signal and normalisation regions must be known at ≤ 10ppm!
- Interplay and complementarity with lattice determination of a_{μ}^{HLO}
- Lol submitted to CERN SPSC in 2019. Test run in 2021 recently approved. Full-statistics run hopefully in 2022–24.

Conclusions

• The present error of the hadronic contribution to $\Delta \alpha (M_Z^2)$ is not sufficient for the precision expected at future circular colliders.

• Possible improvements of $\Delta \alpha_{had}(Mz^2)$ with new low-energy σ_{had} data, a direct determination via $A^{\mu\mu}_{FB}(s)$ near the Z pole, Euclidean split method with spacelike offset (MUonE may help determine it), lattice QCD?

• A connection exists between the muon g-2 and $\Delta \alpha_{had}(M_Z^2)$: is Δa_{μ} due to missed contributions in the hadronic $\sigma(s)$?

Shifts $\Delta \sigma(s)$ to fix Δa_{μ} conflict with the global EW fit above ~1 GeV Shifts below ~1 GeV conflict with the quoted exp. error of $\sigma(s)$.

• MUonE will measure $\Delta \alpha_{had}$ (t<0) and will provide an independent spacelike determination of a_{μ}^{HLO} alternative to the dispersive and lattice ones. It may also help determine $\Delta \alpha (Mz^2)$.