Machine Learning Deep Neural Networks
and experimental likelihoods

2020 International Workshop on

the High Energy CEPC
26 October 2020

Riccardo Torre INEN
INFN Genova "

Istituto Nazionale di Fisica Nucleare

Based on arxiv: 1911:03305 [hep-ph]

The DNNLikelihood: enhancing likelihood
distribution with Deep Learning

" () & - - - .[' o ~) = .},’.)) -) 1] ¢ }’
Andrea Coccaro®. Maurizio Pierini’. Luca Silvestrini”. and Riccardo Torre*
- [‘\vF_\v. \l '_,"t:;u r.’/ (11 nova. ‘-."(! DUI/! Caneso .‘.'.‘,_ [—]h‘]_;h' (71 nova.]ff/a'_f/

Y CERN, 1211 Geneva 23. Switzerland
© INFEN. Sezione di Roma. P.le A. Moro. 2. I-00185 Roma. IZ"(}/_'/

https://www.google.fr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiz-amo25bXAhVKL1AKHX1YANIQjRwIBw&url=http://home.infn.it/it/comunicazione/news/2355-l-infn-cambia-logo-innovare-nel-segno-della-tradizione&psig=AOvVaw3qVuQHUdKNYwyUbtY_zFiq&ust=1509396768551647

LHC physics program

LHC
Run 2 Run 3
LS1 EYETS 14 TeV 14 TeV
13 TeV 13.5-14 TeV energy
injector upgrade 5t07 XI
splice consolidation cryo Point 4 limit - nomina
7 TeV 8 TeV button collimators DS collimation fn%?’:largtlion . HL LH(_: luminosity

P2-P7(11 T dip.) regions installation '

R2E project

Civil Eng. P1-P5

2026

2025

2024

2022

2019 2020 2021

2015 2016 2017 2018

2014

2013

2012

2011

radiation
damage experiment

experiment upgrade 2 x nominal luminosity

750 experiment
° beam pipes nominal luminosity — phase 1 —

nominal
luminosity |

e Cso o —

upgrade phase 2

Main goal: Find signs of New Physics
» direct searches

« directly: probing on-shell new physics

« indirectly: probing the effect of new physics on SM observables

\\ ~W precision physics

Machine Learning Deep Neural Networks and experimental likelihoods

Riccardo Torre

LHC legacy

* In case no new physics is found we have to ensure to take as much as possible
anyway from the LHC

 After the HL-LHC it is important to catalog, combine (when possible) and preserve all
physics results

* The parameter space of BSM physics explored at the LHC is huge and collecting
results in the form of limits on cross-sections and/or 1D/2D plots is not enough

* The legacy of the LHC should consist of a collection of likelihood functions
corresponding to the various channels and physics hypotheses

« The SMEFT is a primary candidate of such BSM parameter space. Hard to explore in
details, many flat directions, etc.

* Need to develop proper statistical approaches to explore large parameter spaces,
encode and preserve all information on theory/experimental uncertainties

« Machine Learning is gaining a leading role in this statistical approach since it offers
both more power in exploring large parameter spaces and in encoding large amount
of information in a standard and portable way

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

The Likelihood Function

Bayes Theorem:

P(data|pars)P(pars) = P(pars|data)P(data)

/ e 1 \

Likelihood function Prior probability Posterior probability Bayesian evidence

Frequentist inference Bayesian inference
e.g. Maximum Likelihood Estimation (MLE) e.g. Maximum A Posteriori (MAP)

The Likelihood Function (LF) is the central object in statistical inference!

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

Distributing likelihoods: existing proposals

Different approaches (and frameworks) in presenting and distributing experimental information

Examples are:

1. Present just the results of the analysis (this was the approach until recent years)
2. Cross section measurements with uncertainties and possibly correlations

3. Measurements in (possibly uncorrelated) bins for several different signal regions, as, for instance

Higgs Simplified Template Cross Sections (STXS)

4. Simplified Likelihood: parametrize the likelihood in terms of “combined” nuisance parameters

using Gaussian approximation up to 3@ moment

5. HistFactory framework (ATLAS): this is going towards publishing all information that allows to

reconstruct the full likelihood

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

Distributing likelihoods: our approach

Our approach: encode the full likelihood with all the dependence on elementary nuisance parameters
into a DNN function. This allows for:

1.

2.

Encoding also unbinned likelihoods (especially, but not only, used in Flavor physics)
Interpolation of different signal regions/hypotheses beyond simple approximations

Re-sampling with custom priors to study the impact of different hypotheses on systematic

uncertainties
Efficient combination of different likelihoods (when correlations are known)
Interpretation of results within different statistical approaches (Frequentist vs Bayesian)

Simple framework independent distribution through the ONNX format (this allows inference in

any software environment (Python, R, Matlab, Mathematica, etc..)

Train with several examples Obtain a DNN interpolator

—

Lonn(fi, 0)

R N

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

A toy LHC-like New Physics

Toy experiment already considered in the literature

search

Buckley, Citron, Fichet, Kraml, Waltenberger, Wardle, 1809.05548 [hep-ph]

C1: N=1006.5+43.5/-54.1 (eff.) +13.5/-26.1 (s.f.) C2: N =256.4 +18.6 /-29.1 (eff.) +31.1/-30.0 (s.f.)

C3: N=526+74/-10.9 (ef.)-12.6/-9.9 (sf.)

®

2

Observed data

Nominal background (+ stat unc.)

Riccardo Torre

Energy scale up/down

Number of events

»
- Theory uncertainty up/down
10 =/
s New physics signal
e *
. x X x X -
1= ¥ M ¥ OMXK ¥ ¥ w o
Ll i rrieeeiraeiteitieieitiieill Lii it ieeiniteeireiteeitiiiggl i1 i1 iaeetiiaitiiiggl
& o . - b o o by oy oy — b
T G - N T R R A R R R B S A R R B TSR I T B B 3R B BB BB TE G BER ~ NI R R0 S B3 BB B2S
Bin index

Figure 2. LHC-like search for new physics (mockup). The search is performed across three event categories, each divided into 30 bins to make a
total of 90 search regions. The nominal expected contribution in each bin from the background and from the new physics signal is shown by the
blue and red lines, respectively. The solid and dashed lines show the 1o correlated variation in each bin expected due to an experimental and
theoretical uncertainty while the blue shaded band shows the uncorrelated uncertainty in each bin due to limited MC simulation. The “observed”
number of events in data in each bin is indicated by the black points.

« One physical parameter (signal strength ()
« 94 nuisance parameters (90 fully uncorrelated, two fully correlated, two normalizations)

Non Gaussian (and not satisfying Wilks™ hypotheses!)

Machine Learning Deep Neural Networks and experimental likelihoods

Sampling

Supervised learning problem (interpolation) where high precision is needed

If we want to allow for both Frequentist and Bayesian inference, we need to know the LF well in very
different regions (where prior volume is large and close to local maxima of the LF)

We sample with the emcee3 (ensemble sampling method) Python package (checking convergence with
several different techniques)

1023

number of samples/bin

101g

1003 1
— 380 —360 —340 —320 —300 —230
log L

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods 7

Inference with analysis likelihood: Frequentist

For frequentist inference we construct the test statistics

Lprof (N)
ﬁmax

tu(ﬂ) = —2log

—— Numerical maximization
S5 (bin size 0.01)

61 --- Sy (bin size 0.02)
---------- S5 (bin size 0.05)
——= S5 (bin size 0.1)
W § R AR -
2 a
Y- A Wilks' 68.27%,
0] === | 10° samples from S5
0.0 0.2 0.4 0.6 0.8 1.0
2

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

Inference with analysis likelihood: Frequentist

For frequentist inference we construct the test statistics

Lprof (N)
ﬁmax

tu(ﬂ) = —2log

—— Numerical maximization
S5 (bin size 0.01)
61 --- Sy (bin size 0.02)

Q. (b cazn N AR
LLIN \J._IU/

Ué '\ ALL W)

~95% hybrid

—.—= 52 (bin size 0.1)
W § R AR o
2 | ~68% hybrid
.. .,.—’\#\xﬂkb()SQ?%
0] === | 10° samples from S5
0.0 0.2 0.4 0.6 0.8 1.0

[l

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

Inference with analysis likelihood: Frequentist

For frequentist inference we construct the test statistics

Lprof (N)
ﬁmax

tu(#) = —2log

~95% profile
— Numerical maximization
=S5 (bin size 0.01)
1/ === 53 (bin size 0.02 .
| 2 (bin. size 0.02) ~95% hybrid
e o s
—.—= 52 (bin size 0.1)
W § R AR ;AT —
= y ~68% profile
2 - ~68% hybrid
.. ...—’\’\fﬂk*SGSQT%
0- 10° samples from S5
0.0 0.2 0.4 0.6 0.8 1.0
[

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

6.’)[]

59 1

dya

fi'a::

Inference with analysis likelihood: Bayesian

68% HPDI train: [1.16e-01,5.81e-01]
68% HPDI test: [-1.18e-01,5.73¢-01]

68% HPDI train: [-5.20e-01,1.40e+00]
68% HPDI test: [-5.19e-01,1.40e-+00]

Train vs test set of S

mmm Train set (107 points)
Test set (108 points)

=== §8.27% HPDI

== 95.45% HPDI

------- 99.73% HPDI

68% HPDI train: [-1.04e+00,2.14e-01]
687% HPDI test: [-1.04e+00,2.08-01]

68% HPDI train: [-1.11e+00,2.99¢-01]
68% HPDI test: [-1.10e+00,2.98¢-01]

hS "
Yp By L

N
u‘JO

68% HPDI train: [-5.07e-01,5.49e-01]
680 HPDI test: [-5.98e-01,5.44e-01]

Bayesian inference is based on (marginal)
posterior probability distributions

We quote results as marginalized Highest
Posterior Density Intervals (HPDI) in 1D and

2D

HPDI

p>—1 >0

68.27%
95.45%
99.73%

0.48
0.86

—0.12, 0.58]
—0.47,0.92]

—0.82,1.26] | 1.22

68% HPDI train: [-3.91e-01,4.75e-01]
68% HPDI test: [-3.84e-01.4.81e-01]

Riccardo Torre

\ 3
PUBN NI

6!]-1

Machine Learning Deep Neural Networks and experimental likelihoods

The DNNLIkelihooa

We set up a supervised learning problem for interpolation (regression) and build and train a simple
multilayer perceptron (MLP) model with Keras+TensorFlow with the following procedure:

- From our sampling we know the LF (our output variable) for several different values of the input
parameters (parameter of interest 14 and nuisance parameters 0, collectively denoted by the input
vector X).

 The nuisance parameters have already been standardized in the analysis, so that their
distribution is Normal with zero mean and unit variance (they do not need preprocessing)

« The values of the LF vary largely, by almost 100 orders of magnitude, and it is better to formulate
the learning problem in terms of the log-LF

« The log-LF still varies between ~-380 and ~-285, which is not a good range for a supervised
learning problem, so we standardized the output variable (log-LF)

« Now the training dataset is constituted by a set of standardized input variables (parameters) with
an associated output variable (scaled log-LF)

« When doing inference, the output values of the DNN are scaled back to their initial distribution

« Notice that our sampling arises from the analytic knowledge of the LF and, as such, does not
contain any stochastic “noise”

« For this reason, our problem constitutes an interpolation more than a regression (generally,
overfitting is not possible)

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods 10

The DNNLIkelihooa

Optimization of the MLP has been carried out on the following hyperparameters:

« Size of training set: we consider 100K, 200K,and 500K training sets

« Loss function: mean squared error (mse)

« Number of hidden layers: usually 2 are enough, more complex problems can need more layers
« Number of nodes per layer: we consider 500, 1000, 2000, and 5000 nodes per layer

« Activation functions: Scaled Exponential Linear Unit (SELU)

« Batch size: we keep fixed the number of batches to around 200, and therefore vary batch size
with training sample size: 512, 1024, 2048

« Optimizer: Adam with starting Learning Rate 0.001. Learning rate is decreased by a factor 0.2
every 40 epochs with no improvement in the validation loss within a tolerance of 1/N with N
number of training events

« Regularizer: we do not need regularization! We cannot overfit, since we are doing interpolation
and not regression. We just use early stopping to shorten training time. We stop after 48 epochs
with no improvement in validation loss within a tolerance of 1/N with N number of training events

« Ensembling: for each architecture we train 5 identical models with randomly extracted training
sets and take the best one to show results. We have experimented ensemble technigques, such
as stacking, which are very promising but were not needed in this “relatively simple” case

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

11

The DNNLIkelihooa

Optimization of the MLP has been carried out on the following hyperparameters:

—_—em =il . ANNL/ NN/ - - 1 TNNI/ T 1 .. - -4

« Size of training set: we

- Loss function: means | . input: | (None, 95)
input_4: InputLayer
Number of hidden laye output: | (None, 95) | ; can need more layers
« Number of nodes per des per layer
« Activation functions: S .'
input: (None, 95)
. Batch size: we keep{ | dense_10: Dense therefore vary batch size

output: | (None, 5000)

with training sample si

« Optimizer: Adam with l lecreased by a factor 0.2
every 40 epochs witl tolerance of 1/N with N
number of training eve

input: | (None, 5000)
output: | (None, 5000)

dense 11: Dense

« Regularizer: we do nc ve are doing interpolation

and not regression. W We stop after 48 epochs
with no improvement | / umber of training events
- Ensembling: for each | input: | (None, 5000) | hdomly extracted training
dense 12: Dense .
sets and take the bes output: (None, 1) 1semble techniques, such
as stacking, which are vely simple” case

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

Results: Bayesian DNNLIkelihood

Train with unbiased sampling S1

Nevt: 1E05 - Hid Layers: 2 - Nodes: 5000 - Loss: mse Nevt: 2E05 - Hid Layers: 2 - Nodes: 5000 - Loss: mse Nevt: 5E05 - Hid Layers: 2 - Nodes: 5000 - Loss: mse
] —— training it] — ftraining 1] — training
1 : s 3 % : E . 3
10° 5 validation] _ validation 10" validation
1 | Model B 1 | Model By 1 | Model Bs
ol Trainable pars: 25490001 10+ “Frainablé pars: 25400061 — - - 109 ~Trainable pars; 25400001 - — -
107 4 S i = E Scaled X False] Scaled X: Falsq
S E Scaled Y: True | S 3l Scaled ¥ True L] Scaled Y: True
:?"r Act func hid layers: selu ELI’“ Act func hid layers: selu % Act func hid layers: sela
= Act func out layéer: linear = 10—1 _Act funclout layer:_].me'u' i — 10—1 _Act func out_]1)'?1' lipear |
o 10—1 Dropout;: 0 ! S| = Dropout! 0 d h Dropout: 0 !
— /\Aﬁ Early stoppmg ‘T‘rue — Early stopping: True | — Early stopping; True
w Ay \ Reduce LR patignce: 40 0w Reduce LR patience: 40 7o) Reduce LR patience: 40
oo Batch norm: False w0 9 Batch ngrm: False oo Sy Batch norm: False
o L. e ?B{irnizer: Adam (LR0.001) @] 1[]_“ S AR A R e Optimizer: —AdanT (LR DOI 1 O].O " Optimizer: Adam [LRO.00T) —
— 10—2 e bty 1= free gt | — atch sige: T = M d Ao bb— e Batch size: 9048
ipochs: 175 1 Epochs: 268 1 Epochs: 363 '
i . GPU: Tesla V IDO-PCII:J—SQGB 9 GPU: GeForce RTX 2080 Ti
103 Min losses; [7.91e.05,6.66e03] _ 10— ~Min tosses:[5. 31&0;391&03]-
10_3 Training time: 2340.6s | Training time: 70155.9s
b Predictidn time: 1.0s | Prediction llme 27.2s
10 —4 _]_O_'l
]-0_-1 T T T i T T T T T T T T T
0 50 100 150 0 50 100 150 200 250 0 100 200 300
epoch epoch epoch
Name Metrics B, | B, | Bs
y = D ‘ =4
Sample size (x10°) 1 2 5 Results
~ % = Iy * O . &
Epochs 178 268 363

Loss train (MSE) (x1073)
Loss val (MSE) (x1073)

0.14
10.11

0.088
6.66

0.054
3.9

Loss test (MSE) (x10~
ME train (x10~
3

)

ME val (x10~
ME test (x10™

3)

3)

3)

10.02
0.47
5.44
4.91

6.64
0.53
2.58
2.31

3.9
0.28
1.76
1.72

HPDI

JiS —ll

(>0

68.27%
935.45%
99.73%

—0.12, 0.58)
~0.47,0.92)

0.49
(.92
1.35

0.49
0.91
1.34

0.48
0.86
122

0.49
0.88
1.29

—0.82, 1.26]
0.41
0.24
0.24
1007
11.5

0.46
0.33
0.40
2341
10.4

0.39
0.43
0.34
8446
14.5

Median p-value of 1D K-S test vs pred. on train
Median p-value of 1D K-S test vs. pred. on val.
Median p-value of 1D K-S val vs. pred. on test

Training time (s)

Prediction time (ps/point)

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods 12

Results: Bayesian DNNLIkelihood

68% HPDI test: [-1.18e-01,5.73e-01]

68% HPDI DNN Ba: [-1.28¢-01,5.78:-01] DNN B3 H&llll]')lillg
mmmm Tost set (10° points)
Sampled DNN B; (10° points)
—-==- 68.27% HPDI
—-— 95.45% HPDI
68% HPDI test: [-5.19¢-01.1.40e400 .
68% HPDI DNN By: [-5.19-01,1.41e400] sennan () 7;3%: HPDI
n | .
e
L &
A7
b
P 3
68% HPDI test: [-1.04e+00,2.08¢-01]
68% HPDI DNN Bs: [-1.02e+00,2.25e-01]
68% HPDI test: [-1.10e+00.2.08¢-01]
68% HPDI DNN Bs: [-1.11e+00,2.98-01]
g
68% HPDI test: [-5.98¢-01,5.44e-01]
68% HPDI DNN By: [-5.08¢-01.5.52e-01]
68% HPDI test: [-3.84e-01,4.81e-01]
68% HPDI DNN Ba: [-1.06e-01,4.64e-01
3 J

o T TR L,
Vs v . .
/’\ /\\ Q Q y
o 0 50 G‘J 1 092 0 93 59 1

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

13

Results: full DNNLikelihood

Train with mixed sampling S3

Nevt: 1EO5 - Hid Layers: 2 - Nodes: 5000 - Loss: mse Nevt: 2E05 - Hid Layers: 2 - Nodes: 5000 - Loss: mse
training j training
101'; ' ' validation 16 ' validation
g Model F}j : Model F5
100+ Trainalle pars, 23490001 100-5 -g&".f&‘ﬂe%; 25490001~ ~ -
/‘SE\ E F;Lcc‘:k;ﬁn‘é h-fcﬁ;}eri selu /,5:\ : S&i?efﬁn‘-(:r h?;ﬁivers selu
2 101 e e o s | g 107 B
= E;"J.‘witi%”;"‘ié?ée 10 g ’ ﬁiﬂfﬁ:ﬁ“ﬁ?ﬂ'ﬁleﬁf 10
103 o - meﬁﬁfﬁs?{%ﬁ%%%ﬁw
g
104
0 50 100 150 0 50 100 1 200 250
epoch epoch
Name Metrics F, F, Fy
Sample size (x10°) 1 2 5
Epochs 183 243 362
Loss train (MSE) (x1073) 0.092 | 0.026 | 0.030 HPDI
Loss val (MSE) (><1()_3) 1.18 | 0.80 | 0.71 2570
Loss test (MSE) (x1073) 1.17 | 0.80 | 0.72 - L/C
. s - L \
ME train (x107?) 3.07 0.47 1.1 95‘4‘30_0
ME val (x10-3) 1.78 | 0.87 | 0.82 99.73%
ME test (x1073) 1.50 | 0.68 | 0.86
Median p-value of 1D K-S test/pred-train | 0.53 | 0.48 | 0.44
Median p-value of 1D K-S test/pred-val 0.15 | 0.27 | 0.20
Median p-value of 1D K-S val /pred-test 0.13 | 0.31 | 0.33
Mean error on () 0.11 0.12 | 0.032
Training time (s) 1236 | 2819 | 7114
Prediction time (us/point) 11.1 | 10.8 | 10.5

Riccardo Torre

Nevt: 5EO5 - Hid Layers: 2 - Nodes: 5000 - Loss: mse

5 training
10" 5 ST
] validation
.1 | Model F3
10 3 L Trainable pars: 25400001
q Scaled X: False
o Scaled Y: True
@ 10-1 _Act func hid layers: selu
e Act func out layer: linear
?:.‘ Dropout: 0
S’ Early stopping: True
o K Reduce LR patlence 40
£ 10) 4 “Baich norm: False it |
'_‘Q k“\k"\" mll Opti mlze J"td'l.m (LRO.001)
-
10—
T T T T
0 100 200 300
epoch

Results

i o= —1 81

Machine Learning Deep Neural Networks and experimental likelihoods

0.48
0.86
1.22

0.50
0.93
1.35

0.50
0.93
1

0.48
0.88
1.28

[—0.12, 0.58]
[—0.47,0.92]
[—0.82, 1.26]

14

Results: full DNNLikelihood

101;
: Model F}j

100_;

1021

Nevt: 1EO5 - Hid Layers: 2 - Nodes: 5000 - Loss: mse

training

—— validation

_Trainable pars; 25490001 _
Scaled X: False

Optimizer: Adam (LR0.001)

Batch size: 512
Epochs: 183

Train with mixed sampling S3

10'

Model F5

Nevt: 2E05 - Hid Layers: 2 - Nodes: 5000 - Loss: mse

training

validation

Trainable pars: 25490001
Scaled X: Falsg

Optimizer: Adam (LR0.001)
Batch size: 1024
Epochs: 243 !

10'4

Model F5

Nevt: 5EO5 - Hid Layers: 2 - Nodes: 5000 - Loss: mse

training

validation

“Trainable pars: 25490001
Scaled X: False,

ey Scaled Y: Trug fﬂ_:\ Scaled Y: True; Scaled Y: True
%] Act func hid layers: selu 5! 1 Act func hid layers: selu _Act func hid layers: selu
i’ 1 Act func out layer: linear =i 10_ E —Act func-out-ldver:-linear Act func out layer: linear
=]_D_ E| “Dropoats 0 = [Dropout: 0 ! Dropout: 0

—] Early stopping: True Mt Early stopping; True Early stopping:, True
o d Reduce LR patience: 40 o0 i Reduce LR patience: 40 Reduce LR patience: 40
£ Batch norm: Ealse 4,]_U_~ E —Batch norm: False Batch norm: False

—_

Optimizer: Adam (LR0.001)
size: 2048

L LA i, “'“”“"W&E}Eﬁl}) IE,__ . y
Min losses: [3.36e-05,8.04e-04]
[phining time: 139460.0s
Prediction time: 22.4s

A\ ANBPE; Tesla T4

Minjng time: 15860.5s
Predigtion time: 11.58

10

104

100 150
epoch

100 150 0 50 200 250 0

epoch

—— Numerical maximization 0.30+| ----—- DNN £ z
s BNSEE 0 P | % b s || e DNN F, o
6 T [+aeas DNN F5 0.95 1 |-=+== - DNN-F5 s
——-= DNN F35 ;f
0.20 /
/'_l"\ F
3 41 -
N = o
3 + 0.15- '
B .
<] e e L et o AP e PPy AT P
7
5 0.10- _ i _
sIo D i b S~ __:". i "-‘ _.‘:
el Al) i ‘f _.' z ""“-..\ i ”-" ‘-‘ _.' ./
e B 0.05 P W A .. "W % ; /
t F 'L'«,. = K \-“ —_n '.‘ - P4
v —— —— . — -‘. ,:F ————————— : —————————— ‘= e _I*:_‘I_I. ——————————
e - o S P Wl
0- g e Y -
1 1 1 1 1 1 — 1 1 e 1 1

1L [

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

Results: full DNNLikelihood

68% HPDI test: [-1.182-01,5.73e-01] AT 5
63% HPDI DNN Fy: [-1.28e-01,5.86¢-01] DNN F3 samphng

Riccardo Torre

Machine Learning Deep Neural Networks and experimental likelihoods

-.'"‘“
| mmm Test set (10° points)
o Sampled DNN Fj (10° points)
] EPCR, =70
’ 68.27% HPDI
4 . - == 05.45% HPDI
68% HPDI test: [-5.19e-01,1.40e+00 y
687 HPDI DNN Fi: [-5.31e-01,1.41e+00) eemeen Q) 73(](HPDI
e | -
TL - B
e Q r
/:L 1
3‘ 2 T T T T T T T T T T T
&
68% HPDI test: [-1.04e-++00,2.08e-01]
68% HPDI DNN Fy: [-1.05e+00,2.182-01]
V1] 1 ™
)
i D7
w “ A
rd
/:L |
>
68% HPDI test: [-1.10e+00,2.980-01]
68% HPDI DNN Fy: [-1.10e-+00,3.16e-01]
e
8
68% HPDI test: [-5.980-01.5.44e-01]
68% HPDI DNN Fy: [-6.00e-01,5.53e-01
r' L
=
687 HPDI test: [-3.84e-01,4.81e-01]
68% HPDI DNN Fy: [-3.95e-01,4.76¢-01]
¥ |
/FL P ° o v /\\-jQ QkQ N2
850 doy doa dog o

16

Conclusions

We introduced the DNNLikelihood, a framework to encode, distribute, combine, and
analyze likelihood functions

In the realistic example we studied it seems to work extremely well without the need of
too much hyperparameters tuning or advanced techniques (which may be necessary
for very complicated multimodal functions)

All code used to produce the paper and all results are available on GitHub

Together with the models our code always produces many auxiliary files keeping track
of all parameters, metrics, results, etc. so that each model is carefully self documented

A comprehensive Python module that allows to sample likelihoods, build models (and
ensembles of models), optimize, and analyze the results within different statistical
frameworks is in the last stage of development. It can be found on GitHub and is
documented here.

Real world examples are under study (ATLAS HistFactory Likelihoods, HepFit, Drell-
Yan W/Y fit, etc.)

A standardized procedure to preserve all DNNLikelihood and auxiliary material in the
Zenodo database is also being developed

Riccardo Torre Machine Learning Deep Neural Networks and experimental likelihoods

17

https://github.com/riccardotorre/DNNLikelihood
https://github.com/riccardotorre/DNNLikelihood
http://rtorre.web.cern.ch/rtorre/DNNLikelihood_doc/index.html

THANK YOU!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

