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New playing rules of the HL-LHC

* High Pile-up expected for HL-LHC
* From 20 (LHC nominal) to ~200 (HL-LHC)

* Adding a timing-layer to the event
reconstruction can reduce the
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Timing distribution for LHC experiments

* Baseline Timing, trigger and control system based on high-speed optical links
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Measuring clock stability

e Jitter - fast phase variations
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* Wander — slow phase variations
* Heavily depends on environmental conditions (temperature, power supply stability, ...)
e Typically measured in time-domain

e Phase-determinism with resets
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Clock source: emulating LHC RF

* High-Precision Timing Clock il i
* Low-cost high-quality generator designed at CERN = :

. : FPGA_\;
* Based on a commercial PLL and OCXO oon == FPGAf = T N
e Used by several members of the CERN High Precision timing = o
community - comparable reference for timing measurements
HPTC -151242626902 (1Hz - 10MHz)
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Front-end: Versatile Link Plus and [pGBT

e Radiation Hard Optical Link and SerDes
* Fixed-latency and low-jitter (<5ps)
 Common project developped by CERN and partner

Institutes
- VTRx+
< stk o
FPGA o <—Q—> ' |
[> Passives
>
Tx

 For more information: https://pos.sissa.it/313/048/pdf
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https://pos.sissa.it/313/048/pdf

Front-end: Versatile Link Plus and [pGBT

e Link timing performance FSWP
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* TIE and phase-noise KCU105 VLDB+ | scope
ooorl | e HPTC | SDV=1.84ps . ol . HpTC | SDV=0.60ps |
— IpGBT | SDV=2.80ps — IpGBT | SDV=1.66ps
0.006 _ o
I —80¢F
— E 3
= o
e 0.005 ﬁ'
B £ -100
2 0.004 N
1] T
E I
E 0.003 T 120
7 v
3 0.002 2 _140
LLl 1§}
o
0.001 o
—160
0.000 o)
10 =5 0 5 10 T T 110 100 17 18 10

Time Interval Error (ps) Frequency Offset (Hz)

e Excellent performance achieved within the specifications of the LHC experiments
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Back-end: TTC-PON

* Back-end timing distribution system adopted by ALICE - ol
and LHCb experiments s [l
ElF FP?A : chip
FPGA : FPGA ™
* Point-to-multipoint optical network inspired on current L~—*—~:~= w N
TTC
* Based on Passive Optical Networks
e Single-fiber usmg WDM anq TDM
e Low-cost for a high split-ratio (1:64) Lpstream downetreanm
1270 nm 1577 nm
2.4 Gb/s T 1 9.6 Gb/s
* Phase-monitoring based on system bidirectionality @

ONU ONU ONU
* Can achieve TIE jitter < 5ps with a careful system design
* More details in NSS 2020
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Back-end: COTS

* Heavily based on commercial components and custom .. =
links

* CERN started a R&D program to study the timing poy B f:
performance of the different components in a timing Nfl -
distribution system (FPGA, PLLs, LDG, ...) — =M

e Steered by the LHC experiments designers

FE

1
— ASIC

FE

o hip

‘ ‘ ‘ (=== ] - OUTL-N1/40MHz
[ iy ] = = 0
| == \ 5-3‘ s
F Technical evaluat ’;i % : %
Phase determinism (between reconfigur: :5 - = z
cycles) over temperature of Silicon Labs - o oY
N (Si5344, Si5345, Si5395, Si5391) 3 5 _g > %
pont | avigit _;; 1) i
ot 2 e e - 5 5
Asndly. ity Aewwid = o [
%0 1 1 1 1 2 50 0
lllllll {min}
| (a) NO / OUT 40MHz (b) N1/ OUT 40MHz
Example: recommendation on how to use Si5344 PLL to avoid phase-jumps
* Some results can be found here
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https://espace.cern.ch/HighPrecisionTiming

Back-end: HPTD IP

* Higher Phase-determinism for Ultrascale transmitters
e Results presented in IEEE TNS
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https://ieeexplore.ieee.org/abstract/document/8967127

Back-end: Timing Compensated link (TCLink)

 CERN developped an FPGA-IP to implement timing i

monitoring and compensation in FPGA-based links o e[
* Protocol-agnostic = _71/<ﬁ\—: N
* Presented in TWEPP-19 % —

e
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* Unique feature: fully integrated (no need of external components)
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https://cds.cern.ch/record/2724958/files/PoS(TWEPP2019)057.pdf

Back-end: Timing Compensated link (TCLink)

* Tracks and correct slow-phase variations with sub-ps resolution

TCLink under fiber temperature variation
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Timing distribution

* |t is possible to achieve a high timing performance with our current
systems but...

Si5395A (40.0 MHz) - generator is FS725 (10MHz)
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... any design mistake can greatly jeopardize the performance of a timing
distribution network
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Conclusions

* To achieve the high-performance required for HL-LHC...

 CERN and external institutes are undergoing an extensive R&D program on the different
components of a timing distribution system

* Some weak-points were identified and solutions proposed

e Early system prototypes helped in gaining confidence that such a system can meet the
specifications
* See this talk of Jeroen Hegeman from CMS-DTH

* |tis possible to achieve a high timing performance for our needs with our current
systems but a careful system design has to be carried out

THANK YOU
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BACK-UP
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CMS DTH

* Baseline system distributes clock and fast control

= Clock
= Fast Control
TCDS2 Master =P Clock & Control
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* Excellent performance achieved in the first
full-chain prototype

e For more information see this talk from
Jeroen
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https://indico.cern.ch/event/813822/contributions/3669857/attachments/1975741/3290113/bttb2020.pdf

White-Rabbit

e High-accuracy (sub-ns) time transfer using an enhanced
version of the Precision Time Protocol (PTP)

t1 Sync t
Follow_Up (with 1,) | Offset,
t Delay Reg Slave Syntonized
| 3 recovered and
Delay Resp (with t,) _ clock, synchronized
7| syntonization clock
Reference v v (2) (3.5)
clock (1) A 5 A o
» t3m » ms rxs . ) _ClDCk
= adjustment
Master PHY Slave PHY
AD{I“ 6 'ATKS
Master recovered clock (4) o

PhaSE | phaseMM
detector

* The high accuracy of synchronization achieved in White Rabbit was standardized.

e Can be used to distribute RF signals: currently being implemented at CERN SPS-RF

* Prototype shows better than 100fs jitter and phase-determinism over resets below 10ps
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https://sagroups.ieee.org/1588/

Pure clock distribution

* An alternative to a serial self-synchronous based timing distribution system

would be a pure clock distribution link - no data-encoding
e Presented in TWEPP19 by University of Minnesota
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https://indico.cern.ch/event/799025/contributions/3486289/attachments/1901431/3138982/TWEPP-V1.pdf

ime transfer on free-space

* Work developped at NIST for time-frequency transfer in free-space
e Based on frequency-comb
* Not directly applicable for a detector-wide timing distribution but some ideas can be
Inspiring...

e High-performance achieved with accuracy on femto-second level
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