

CEPC Calorimetry DAQ: considerations and estimates after CDR

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

International Workshop on High Energy Circular Electron-Positron Collider Oct. 26-28, 2020

Considerations and estimates for ECAL DAQ

CEPC CDR: DAQ for ECAL

Maximum event rate: 100 kHz

Peak event rate: ~32kHz at Z-pole

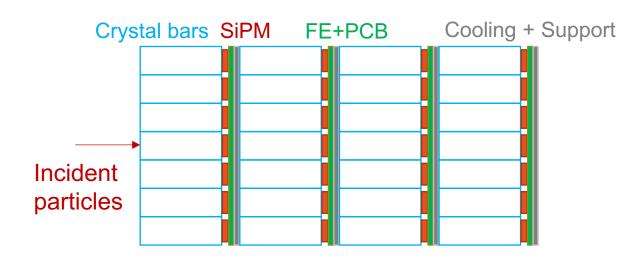
Safety margin: a factor of ~3

10 µs time window for readout

ECAL: 2 options in CDR

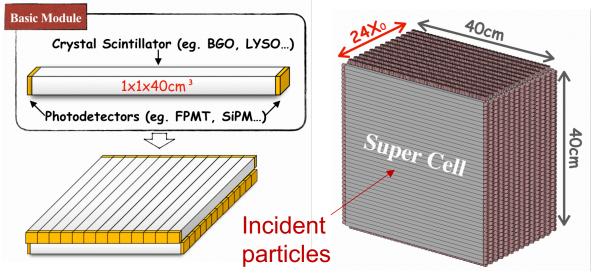
• Si-W ECAL: $10 \times 10 \text{ mm}^2$ silicon pads

• Sc-W ECAL: 45×5 mm² scintillator strips


Longitudinal depth: 24X0

ECAL options	#Channels [Million]	Occupan cy [%]	#bit per channel	#readout channels/e vt	Data Volume per event	Data rate at 100kHz
SiW ECAL Barrel	17	0.17	32	28.8 k	117 kByte	11.7 GBytes/s
SiW ECAL Endcap	7.3	0.31	32	22.4 k	90 kByte	9.0 Gbytes/s
ScW ECAL Barrel	7.7	0.17	32	13.1 k	53 kByte	5.3 GBytes/s
ScW ECAL Endcap	3.3	0.31	32	10.2 k	41 kByte	4.1 Gbytes/s

Crystal ECAL: a new concept


Design 1

- Longitudinal segmentation
- Fine transverse segmentation
 - 1×1cm or 2×2cm cells
- Single-ended readout with SiPM
- Potentials with PFA

10/28/2020

Design 2 (current focus)

- Long bars: 1×40cm, double-sided readout
 - Super cell: 40×40cm cube
- Crossed arrangement in adjacent layers
- Significant reduction of #channels

International Workshop on High Energy Circular Electron-Positron Collider

Timing at two sides: positioning along bar

DAQ for crystal ECAL: considerations (1)

- Based on the CDR values: scaling exercise
- 2 Major scaling factors
 - #channels: generally crystal ECAL will have much less channel count (higher occupancy)
 - #bit per channel: higher precision to cover a large dynamic range
- Considerations
 - Design 2: detector layout with long crystal bars
 - e.g. 24 longitudinal layers, $40 \times 1 \times 1$ cm³ long bars
 - 2 readout channels for a $40 \times 1 \times 1$ cm³ crystal bar
 - A factor of 20 less in terms of #channels -> (Roughly) a factor of 20 increase of occupancy
 - Need to cover (on the order of) 10 GeV energy deposition in a single crystal
 - Trigger threshold: 0.15 MeV (1.5% of MIP) -> Energy Dynamic range: 60000 -> 16 bit ADC
 - Rough estimate on timing resolution: ~100ps; bunch spacing: 680ns at Higgs -> 12 bit TDC
 - Reserve 4-bit for channel/module ID and redundancy

DAQ for crystal ECAL: considerations (2)

- Based on the CDR values: scaling exercise
- 2 Major scaling factors
 - #channels: generally crystal ECAL will have much less channel count (higher occupancy)
 - #bit per channel: higher precision to cover a large dynamic range
- Considerations
 - Design 1: detector layout with short crystal bars
 - e.g. 10 longitudinal layers, 2×2 cm² transverse size (Note: the granularity not finalised)
 - 1 readout channel for a 2×2×2cm³ crystal cube
 - A factor of 8 less in terms of #channels -> (Roughly) a factor of 8 increase of occupancy
 - Need to cover (on the order of) 20 GeV energy deposition in a single crystal (from simulation)
 - Trigger threshold: 0.3 MeV (1.5% of MIP) -> Energy Dynamic range: 60000 -> 16 bit ADC
 - Rough estimate on timing resolution: ~100ps; bunch spacing: 680ns at Higgs -> 12 bit TDC
 - Reserve 4-bit for channel/module ID and redundancy

DAQ for crystal ECAL: considerations

ECAL options	#Channels [Million]	Occupa ncy [%]	#bit per channel	#readout channels/e vt	Data Volume per event	Data rate at 100kHz
Crystal ECAL with long bars (Barrel)	0.85	3.4	32	28.9 k	116 kByte	11.6 GBytes/s
Crystal ECAL with long bars (Endcap)	0.36	6.2	32	22.4 k	90 kByte	9.0 Gbytes/s
Crystal ECAL with short bars (Barrel)	2.13	1.36	32	28.9 k	116 kByte	11.6 GBytes/s
Crystal ECAL with short bars (Barrel)	0.913	2.48	32	22.4 k	90 kByte	9.0 Gbytes/s

- #channels is reduced in crystal ECAL, but occupancy gets increased.
- If the occupancy scales up linearly with reducing #channels (to be verified), the data rate remains unchanged
- Another open issue: how much data volume required for high-bandwidth waveform sampling for better timing resolution

International Workshop on High Energy Circular Electron-Positron Collider

10/28/2020

Considerations and estimates for HCAL DAQ

CEPC CDR: DAQ for HCAL

- Maximum event rate: 100 kHz
 - Peak event rate: ~32kHz at Z-pole
 - Safety margin: a factor of ~3
 - 10 µs time window for readout

- HCAL: 2 options in CDR
 - Scintillator HCAL: 30×30 mm² scintillator tiles
 - SDHCAL: $10 \times 10 \text{ mm}^2$ RPC pads
 - Longitudinal depth: 40 layers (\sim 4.7 λ)

ECAL options	#Channels [Million]	Occupancy [%]	#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz
Scintillator HCAL Barrel	3.6	0.02	32	0.72 k	2.9 kByte	0.3 GBytes/s
Scintillator HCAL Endcap	3.1	0.12	32	3.72 k	15 kByte	1.5 Gbytes/s
RPC HCAL Barrel	32	0.004	8	1.28 k	1.28 kByte	0.13 GBytes/s
RPC HCAL Endcap	32	0.01	8	3.2 k	3.2 kByte	0.32 Gbytes/s

HCAL updates after CEPC CDR

- Based on the CDR values: scaling exercises
- One major scaling factor for scintillator-HCAL (AHCAL)
 - #channels: generally scintillator HCAL will have less channel count
 - Scintillator tiles: $30\times30 \text{ mm}^2 \rightarrow 40\times40 \text{ mm}^2$ (a factor of ~1.8)
 - #channels is reduced in HCAL, but occupancy would get increased.
 - If the occupancy scales up linearly with reducing #channels (to be verified),
 the data rate remains unchanged
- DAQ for SDHCAL remains the same as CDR
- Other considerations on the SDHCAL
 - Currently R&D efforts ongoing on high-precision timing capability for SDHCAL
 - Timing resolution on the order of 10 ps would require higher #bit/channel
 - Remains to be estimated, based on the detailed technical design

CEPC CDR: estimates of DAQ for HCAL

- Maximum event rate: 100 kHz
 - Peak event rate: ~32kHz at Z-pole
 - Safety margin: a factor of ~3
 - 10 µs time window for readout

- HCAL: 2 options in CDR
 - Scintillator HCAL: $40 \times 40 \text{ mm}^2$ scintillator tiles
 - SDHCAL: 10×10 mm² RPC pads
 - Longitudinal depth: 40 layers (\sim 4.7 λ)

HCAL options	#Channels [Million]	Occupancy [%]	#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz
Scintillator HCAL Barrel	2.0	0.036	32	0.72 k	2.9 kByte	0.3 GBytes/s
Scintillator HCAL Endcap	1.7	0.216	32	3.72 k	15 kByte	1.5 Gbytes/s
RPC HCAL Barrel	32	0.004	8	1.28 k	1.28 kByte	0.13 GBytes/s
RPC HCAL Endcap	32	0.01	8	3.2 k	3.2 kByte	0.32 Gbytes/s

Summary

- New developments in calorimetry after CDR
 - Crystal calorimeter: evolving design, currently focused on performance studies
 - Granularity optimized for Scintillator-Steel Hadron Calorimeter
 - High-precision timing proposed for further calorimetry R&D
- Further studies necessary for DAQ requirements, considering
 - Updates from Z-pole running

Yong Liu (liuyong@ihep.ac.cn)

- Occupancy (vs. granularity) estimates
- Electronics requirements for crystal readout
- Data volume required by high-precision timing information
- ...

