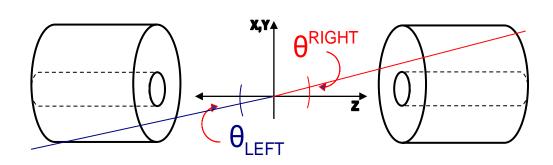
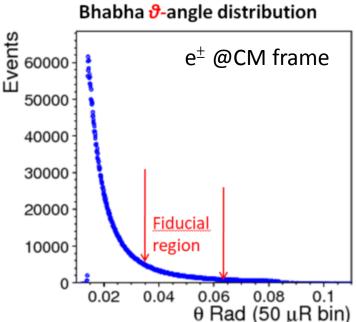

TDAQ for LumiCal


LumiCal physics


• Bhabha $e^+e^- \rightarrow e^+e^-$ (γ)

elastics e^+e^- scattering, luminosity measurement

- 1. $E(e^{\pm}) = E_{beam}$
- 2. e⁺, e⁻ Back-to-Back
- 3. radiative Bhabha, correlated with e^+e^- , $\Sigma p=0$
- **Two-photon** interaction $e^+e^- \rightarrow e^+e^-X$,
 - 1. single tagged, one e[±] enter LumiCal
 - 2. γγ final state enter central det.
- Forward physics

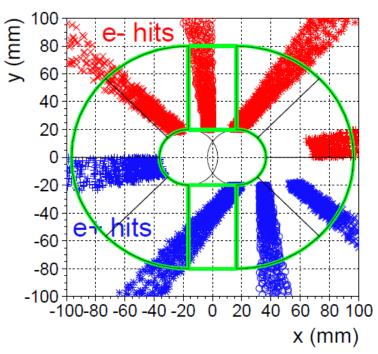
NLO SM, energetic gamma, searches

LumiCal event rate

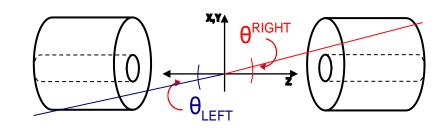
- Event rate, Bhabha dominant, @ L = 10^{34} /cm² s $260 \text{ nb} \times 10^{34}$ /cm² s = 2.6 kHz
- Data volume per side

80k channles, 8-bit words = 2.6k x 80 kB/sec = **210 MB/sec**

Scale factor x10 🗲


event rate = 26 kHz data volume each Z sides = 2.1 GB/sec

Zero suppression x 0.01


Data flow = 21 MB/sec

Bhabha Xsection, Lab frame, r= 30 mRad Full phi coverage	
detect ONE electron	detect both electrons
262.0 nb	74.6 nb

e^{\pm} hit distribution @ Z= \pm 1 m

LumiCal triggers

Bhabha Lumi Trigger

Level 1: $(?? 100 \text{ kHz } @L=10^{34})$

- 1. Calo $E_{cluster}$ >1/2 E_{beam}
- 2. Si-strip sum-Q

Level 2: $(?? 10 \text{ kHz} \otimes L=10^{34})$

- 1. Phi back-to-back coincidence of Left/Right Calo-E
 - → Bhabha both e⁺e⁻ detected
- 2. **Phi same-side coincidence** of Calo-E, Si-strip
 - \rightarrow Bhabha one e^{\pm} detected
- **Physics trigger:** (?? <1 kHz @ L=10³⁴)
 - 1. Two-photon, Radiative Z

 Coincidence w. central tracker/E cal

 Single tagged two-photon, one electron trigger
 - 2. Searches

 Calo-E, coincidence w. MissET

 Single-photon e.g. ee → vvy

LumiCal data stream 80k chs/Z-side

Coverage 30 ~ 100 mRad

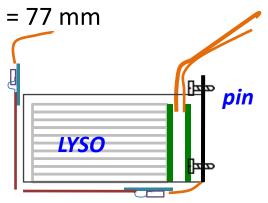
8-fold Silicon-Strip surrounding beam-pipe Z = 340 – 700 mm:

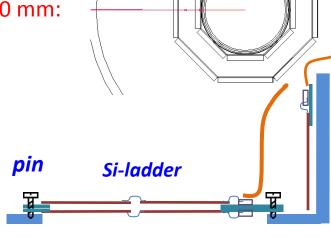
- > 28 chips on z-strip, 100 um pitch, 128x28x.1 = 360 mm
- 2 chips on φ-strips
- > Total 8x30*128 = **31k** channels

8-fold Silicon-Strip disks on flange r=20 - 70 mm:

- ➤ 8 chips on r-strip, 50 um pitch, 128x8x.05 = 51 mm
- 2 chips on φ-strips
- ightharpoonup Total 8x10*128 = **10k** channels

Calo inner Silicon-Strip surrounding beam-pipe Z = 1100 – 1300 mm:


- ➤ 8 fold round+2-rectangulars: 16 chips on z-strips, 100 um pitch 128*16*.1 = 200 mm
- > Total 10x16*128 = 20k channels


Silicon-Strip disk on Calo surface r=20 – 100 mm @z=1100:

- \triangleright 8-fold slice: 12 chips on r-strip, 50 um pitch, 128x12x.05 = 77 mm
- 2 rectangular: 12 chip on r-strip,
- > 2 chips on φ-strips each slice/rectagular
- > Total 10x14*128 = 18k channels

Calo SiPM, $2x2mm^2$ over $x=\pm 100mm$, $y==\pm 80mm$

 \rightarrow Total 100x80 = 8k channels

LumiCal TDAQ summary

- Bhabha event rate: 2.6 kHz @L=10³⁴/cm²s

 Trigger: back-to-back Calo-E || , single sided Calo-E || Si-Strip
- Physics event, two-photon, NLO SM, searches
 event rate ~ 1% to Bhabha; trigger : Calo-E || tracker/Ecal
- LumiCal data volume: 80k Ch., 2.6 kHz x 80 kB raw data
 Trigger scale x10
 Occupancy, Zero suppression x0.01
 - → data flow = 21 MB/sec