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Silicon Detector Evolution
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Pixel Readout Varieties
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Classic MAPS readout

* For light- front illuminated

* Very few transistors per pixel sharing active
area with sensor

* Very small pixels and very low power
 Slow

* Minimal rate capability

* No timing information

Canon DSLR 18MP sensor detail (2012)
8x8 um pixels
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HEP MAPS

Alpide chip pixel layout
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RD53B pixel layout

* Readout decoupled from sensor

 1000's of transistors per pixel

Same or a little bigger pixels than HEP MAPS
e Still more power

e ~10ns timing information

e Ultimate hit rate capability

* Free to use commercial CMOS processes
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= LGAD Readout

CMS ETROC “pixel” layout

* Readout decoupled from sensor
 10,000’s of transistors per pixel
* Very large pixels today

* Precision time measurement in pixel and
precision time reference distribution

e Still more power

e ~30ps timing information

e High hit rate capability

 Huge amount of data due to precision timing

Imm
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Challenges
9

Hybrid
— i
« Customization  Access to and designin Pixel size with precision timing
« Speed, Timing deep submicron CMOS < Data volume with precision
. Rat | *  Power timing
ag : e Mass * Power and mass with precision
* Radiation hardness timing

Lots of functionality requires

Specialized processes used for lots of transistors.

HEP MAPS are not highly scaled

Enabled by scaling in high volume
commercial CMOS

Can’t compete in functionality with
deep submicron CMOS

| |
lower Rate, radiation, timing - higher
| |
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:—% Readout ASIC New Directions

« 65nm CMOS is current workhorse node for readout chips
* More functionality (like precision timing in small pixels) requires even higher logic density
« 28nm CMOS is the next favored node for HEP ASIC design
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known from 65nm experience

« Access to technology is requires legal NDA’'s with vendors that restrict collaboration
« Large design teams are needed to carry out complex designs in scaled CMOS

* Engineers with specialized skills, like UVM digital verifcation, are essential
 Some EDA design tools needed for digital design may have high license costs

e T e e

One flat synthesized circuit

~ 200K transistors i

Whole core is stepped
and repeated to make the
pixel matrix

Hand-drawn transistors

compiled software”

e

INPUT @ 160 Mbit/s

Digital pixel matrix in sophisticated SoC
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:—% LGAD New Directions & Opportunities

* Resistive AC-Coupled Silicon Detectors ( arXiv:2007.09528 )

* Promise high position and time resolution with low channel count and low assembly
cost. Solves problem of making tiny pixels with huge functionality and low power.

e  Will require new optimization of readout ASIC

* New opportunity to include
Machine Learning in ASIC to

learn and apply position calibration

(“Application of machine learning
algorithms to the position
reconstruction of Resistive Silicon
Detector” paper in preparation)

« => Even more complex SoS

AC coupling oxide

>/

Resistive n++ electrode

gain layer

p++ electrode

Amplitude [mV]

Amplitude [mV]

Example of signal sharing RSDES

- m‘l

80 . 60

Pad 1

Pad 2

40

20

50-mm thick RSD,

0 Gain ~ 20

-20

Time [ns] Time [ns]

‘ The laser is shot at the position of the red dot: the signal is seen in 4 pads |

Propose to achieve 5um position resolution with ~100um pitch pixels instead of
25um pitch. 10X lower channel count => lower power
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Radiation only and issue at Inner layers
Y PP y
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Future pp
4 ] ] ] ] ] | |

| | | | | | |
10krad 100krad 1Mrad 10Mrad 100Mrad 1Grad 10Grad

>

Temperature history
Process details
Dose rate

Dose history
Annealing
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Data Rate

* High speed and huge capacity of scaled CMOS allows to generate
enormous data rates. >>10Gbps links are feasible

 The problem is not generating the data, but getting it out of the
detector

 Many development examples and options.
* My subjective list:

* On-chip data compression. Lossless — lossy (ML)
e Advanced protocols. 64b/66b NRZ - PAM4 -, ...
* Silicon photonics, eg. WDM near chip
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Conclusions

* Trade-off between monolithic and hybrid driven by functionality and
power requirements.
* Higher hit rate, precision timing, & radiation favor hybrid.

* The amount of intelligence that can be included in a hybrid pixel
readout chip is not limited by technology- only by ideas on what else

to do and human resources to carry out a complex design.
* Gave examples of 28nm CMOS aimed at small pixels with precision
timing and/or built in machine learning

* Challenges of 28nm CMOS design are known from 65nm experience

* Even bigger and more expert design team will be needed and technology
access is even more difficult

* ASIC radiation tolerance under control for all but future pp inner layer.
But requires constant validation and vigilance- there are always
surprises with radiation damage.

* A 28nm chip can generate huge data rates- the challenge is getting it
off detector
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BACKUP
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| ow Gain Avalanche Devices

Cathode
Ring

Avalanche
s Region

Place an SIPM implant structure on a fully
depleted pixel sensor

Operate below Geiger threshold!
Boosts rise-time of signals — fast timing
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LGAD was motivated by LHC pileup
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