High Performance Timing Measurement for CEPC SDHCAL

Weihao Wu

On behalf of Shanghai-Omega-Lyon Group CEPC Workshop 2020/10/26

1

Outline

- Why do we need timing in SDHCAL
 - Limitation of high granularity PFA Calorimeter
 - Showers separation
 - MRPC performance
- A prototype of timing electronics
 - Front-end board for MRPC readout
 - Detector interface board
 - DAQ system
- Summary

PFA based SDHCAL for CEPC

- High granularity PFA
 - Particle Flow Algorithm
 - **Topology** and **energy** information
- PFA algorithm
 - It connect first hits and then their clusters using distance and orientation information, then correct using tracker information

Timing in PFA Calorimeter

Timing could be an important factor to identify delayed neutrons and better reconstruct their energy.

Timing in PFA Calorimeter

- Timing information can help to separate close by showers and reduce the confusion for a better PFA application.
- Example: Pi-(20 GeV), K-(10 GeV)

Timing in PFA Calorimeter

- Timing information can help to separate close by showers and reduce the confusion for a better PFA application.
- Example: Pi-(20 GeV), K-(10 GeV)

SDHCAL with Timing Measurement

• 5-dimension PFA SDHCAL:

- Position, Energy and Timing
- Identify neutral and charged hadrons
- Detector and electronics upgrade
 - High performance timing measurement

Multi-gap RPC

Multi-gap RPC are excellent fast timing detectors

SDHCAL Electronics

SDHCAL Prototype

SDHCAL FE based on HARDROC

SDHCAL prototype Size: 1m x 1m x 1.4m No. of layers: 48 Cell size: 1cm x 1cm No. of channels: 440K Power: 1mW/ch

- SDHCAL Readout ASIC: HARDROC from Omega group
- Time resolution: time stamping 200ns
- 64 input channels
- 3-threshold: 110fC, 5pC, 15pC

Readout Electronics Upgrade

- Time measurement with 10 bits TDC interpolating 40MHz clock
 - Timing resolution below 40 ps
- Charge measurement with 10 bits DAC
- Other parameters:
 - The 32chs input connected with PCB PAD (detector unit)
 - Each channel split into two parts for charge and time measurement
 - Power consumption (~6mW/channel)

PETIROC2A

Timing Measurement @ PETIROC2A

FEE Prototype

Front-end electronics and data acquisition

- First step: Front-End prototype with four PETIROC2A chips
- DAQ system based on commercial Xilinx ZCU102
- Detector Interface (DIF) card for data transfer between the FE electronics and the back-end DAQ

Design of Front-end Board

PCB layout of front-end electronics(prototype board)

- Four PETIROC2A chips
- 128 pads (yellow square), induction unit size: 1cm×1cm.
- Clock buffer(2:8) for clock signal (40MHz and 160MHz)
- Two headers for communication with DAQ
- SMA for injection test.

Design of Front-end Board

Stack-up and via design

- 12 layers PCB
- Many induction units are at the bottom

- Via technology:
 - Laser-drilled Via Technology (small size: ~0.1mm) between outside two layers
 - Buried Vias with the size 0.3mm

Front-end Board

Detector Interface Card

PCB layout of DIF card

- Voltage regulator
- Voltage level shifter

- Jitter cleaner (SI5345)
- Slow ADC (5MSPS)

Detector Interface Card

DAQ Board

- FPGA: ZYNQ UltraScale+ MPSoC
 - SFP, Ethernet, DDR4 etc.
- 2x FMC-HPC connectors
 - 128 single-ended or 64 diff signals
 - 66 I/O used for four petiroc2a chips
- Ethernet communication
- FPGA design is ongoing.

Xilinx ZCU102

Summary

- The timing information is very useful for SDHCAL; it help identify neutrons and charged particles.
 - MRPC can achieve 100ps timing resolution
 - PETIROC used as readout ASIC, supporting <40 ps timing resolution
- The design of a front-end prototype (with four PETIROCs) and a interface card has been completed.
 - Laser-drilled vias and buried vias are used for the FE board, due to induction pads at the bottom.
- The Xilinx ZCU102 board will be used as the DAQ system. The FPGA design is ongoing.