

# 65nm CMOS imaging process for a high resolution pixel detector

Laura Gonella (University of Birmingham) with inputs from Walter Snoeys (CERN)

CEPC Workshop, 26 October 2020

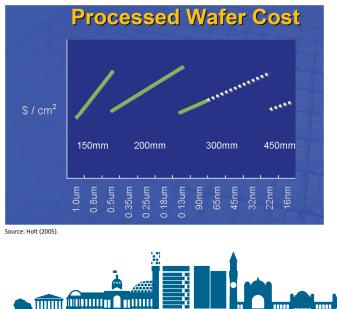


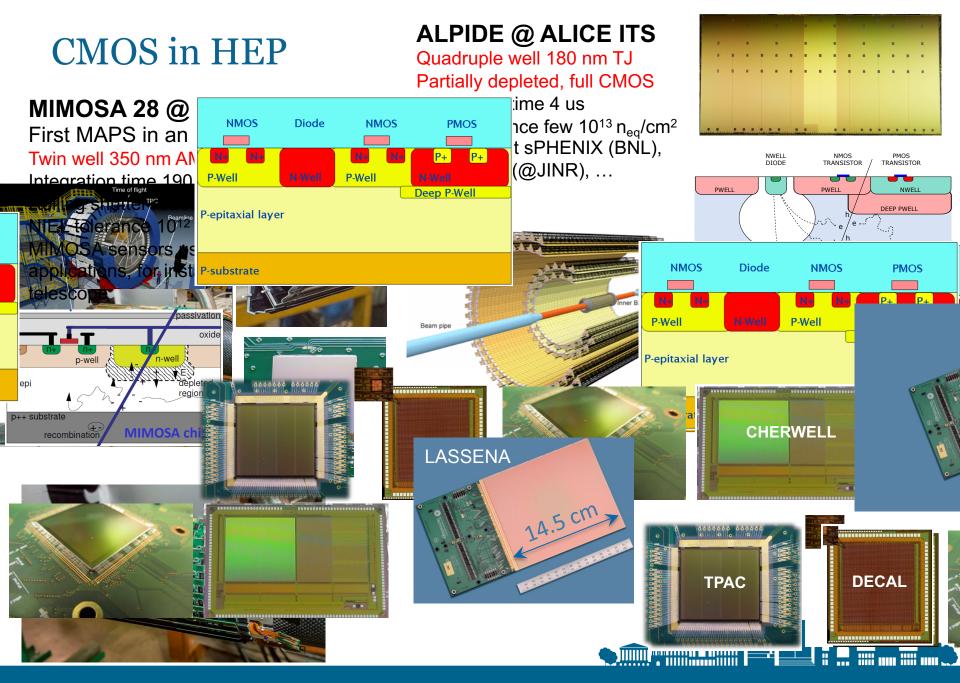
#### Overview

- CMOS imaging technology and HEP
- □ 65 nm CMOS imaging technology
- □ First target applications of 65 nm MAPS
  - ALICE ITS3 project
  - EIC SVT
- Status of design activities
- Conclusion



### CMOS imaging technology


- Fast technology evolution and large market driven by various commercial applications
- Reduced processing costs per area with the introduction of larger wafer size (300 mm)



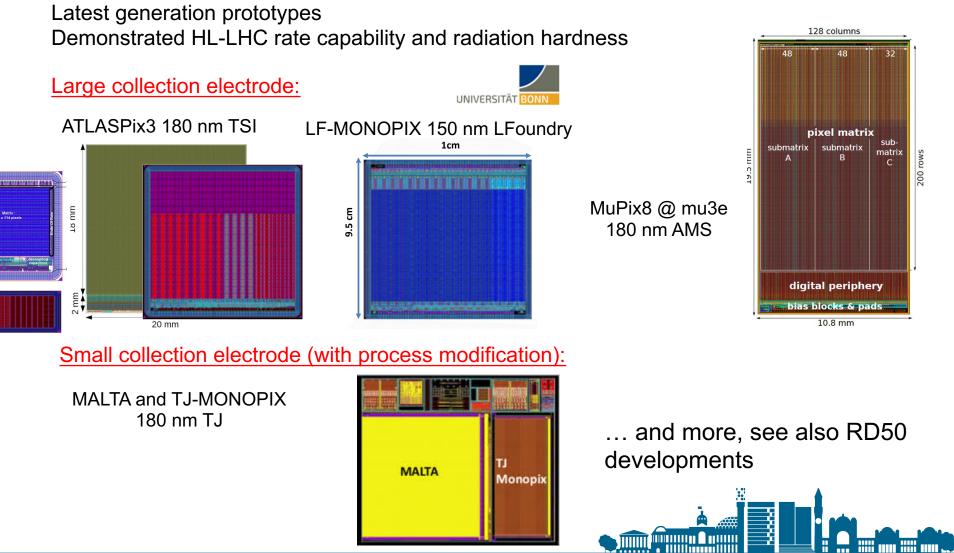

#### CMOS Image Sensor Growth Continues into Next Decade










Laura Gonella | CEPC Workshop | 26 October 2020

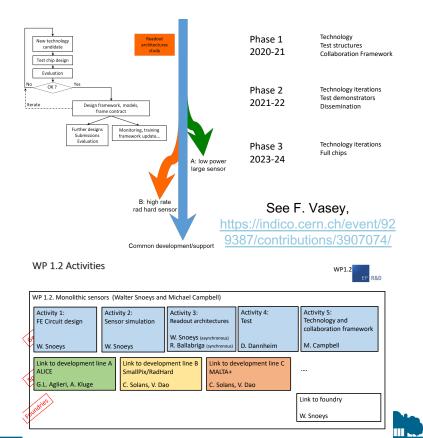
#### **CMOS** in HEP

#### **Fully depleted MAPS**

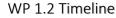
W. Snoeys et al NIMA 817 (2017)
M. Dyndal et al 2020 JINST 15 P02005
K. Moustaks et al NIMA 936 (2019) 604-607
H. Augustin et al NIMA 936 (2019) 681-683

R. Cardella et al 2019 JINST 14 C06019 I. Caicedo et al 2019 JINST 14 C06006 T. Hirono et al NIMA 924 (2019) 87-91 R. Schimassek https://doi.org/10.1016/j.nima.2020.164812




#### Motivations for 65 nm in HEP

- □ State-of-the-art MAPS for HEP use 180 nm CMOS imaging technologies
  - These technologies are now around 20 years old
- □ Proposed future HEP facilities, planned over the next few decades will need improved performance in terms of granularity, power consumption, rate and radiation hardness → smaller feature size technology needed
- □ The HEP community is starting exploration of 65 nm technologies
  - Higher logic density (increased performance/area, higher granularity)
  - Lower power
  - Higher speed (logic, data transmission...)
  - Process availability
  - Higher NRE costs and complexity, but lower price per area




#### CERN EP R&D programme: WP1.2 MAPS

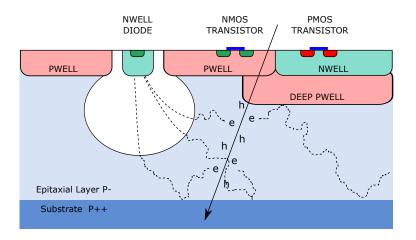
- Evaluate technology candidates for the development MAPS for future HEP experiments
  - 65 nm, further studies of TJ 180 nm process, more advanced nodes
- Work is organised around three areas
  - Technology selection and validation
  - Pre-prototyping of a large, low-power and high-resolution sensor (ITS3 sensor for ALICE/e+e-)
  - Pre-prototyping of a fast and rad hard sensor (for high luminosity general purpose experiments)



<u>WP leaders:</u> Walter Snoeys, Michael Campbell



### First technology selection


□ Several 65 nm flavours: high density logic, RF, and imaging (ISC)

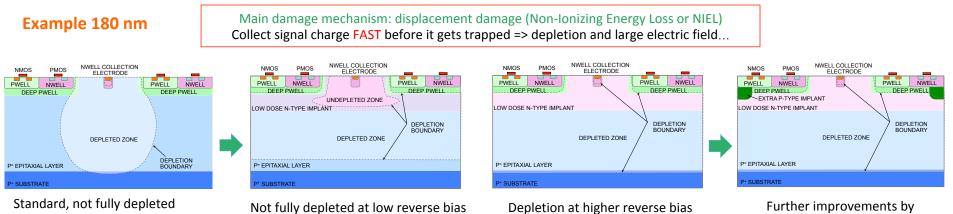
#### □ ISC preferred

- 2D stitching experience, special sensor features, lower defect densities, at present limited to 5 metal layers but more metals later, no MPWs available
- Modus operandi agreed by foundry in May: start directly in ISC with Multiple Layers per Reticle with standard metal stack
  - Avoid non-representative results (for transistor irradiation measurements)
  - Multiple Layer per Reticle (in between MPW and engineering run)
  - Several starting materials available; the collection electrode is always ntype, the same readout circuit can be used for different starting materials

### Starting material: first possibility

- □ Similar sensor structure possible as in ALPIDE
  - Deep wells available
  - High resistivity p-type epitaxial layer ~ 10 micron thick
  - Depending on pixel size and area taken by readout, sensitive layer not necessarily fully depleted



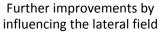

J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002

See W. Snoeys, https://indico.cern.ch/event/929387/contributions/3907086/attachments/20631 52/3585457/WP1-2 24 6 2020 b.pdf



#### Starting material: Other options

- □ Move junction away from collection electrode
  - full depletion, better time resolution and increased radiation hardness




Additional implant for full depletion => order of magnitude improvement

Side development of ALICE for ALPIDE

NIMA 871 (2017) pp. 90-96 https://doi.org/10.1016/j.nima.2017.07.046

Triggered development in ATLAS H. Pernegger et al, 2017 JINST 12 P06008



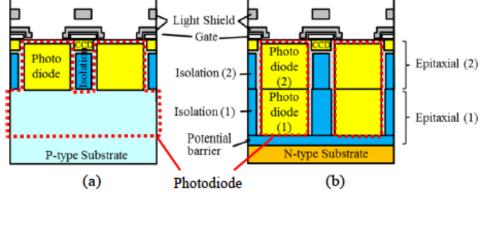
See W. Snoeys, https://indico.cern.ch/event/929387/contributions/3907086/attachments/20631 52/3585457/WP1-2 24 6 2020 b.pdf



#### Laura Gonella | CEPC Workshop | 26 October 2020

EP R&D

### Starting material: Other options


#### Novel Pixel Structure with Stacked Deep Photodiode to Achieve High NIR Sensitivity and High MTF

Hiroki Takahashi, Hiroshi Tanaka, Masahiro Oda, Mitsuyoshi Ando, Naoto Niisoe, Shinichi Kawai\*, Takuya Asano\*, Minoru Sudo\*, Mitsugu Yoshita\*, Tohru Yamada\* TowerJazz Panasonic Semiconductor Co., Ltd. 800 Higashiyama, Uozu City, Toyama 937-8585, Japan \*Panasonic Semiconductor Solutions Co., Ltd. 1 Kotari-yakemachi, Nagaokakyo City, Kyoto 617-8520, Japan

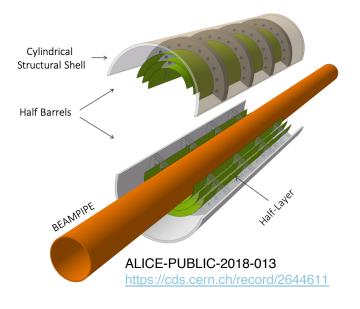
#### DOI: 10.1109/VLSIT.2016.7573450

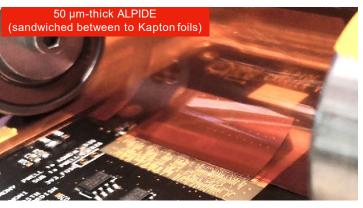
- □ Already in production for visible light
- □ Single thickness or double (stacked)
- Also here the junction is displaced from the collection electrode with similar advantages
- □ Can be explored perhaps in a second phase
- One example out of several starting material options
- Readout circuit agnostic (collection electrode remains n-type)

https://indico.cern.ch/event/929387/contributions/3907086/attachments/20631 52/3585457/WP1-2\_24\_6\_2020\_b.pdf



Micro lens





FP

R&D

#### ALICE ITS3 vertex detector

- The ALICE ITS3 project aims at developing a new generation MAPS sensor at the 65 nm node coupled with R&D into extremely low X/X<sub>0</sub> truly cylindrical vertex detection for the HL-LHC
  - See M. Mager's talk later today
- Sensor features: low power; large area, stitched; ultra thin and bent

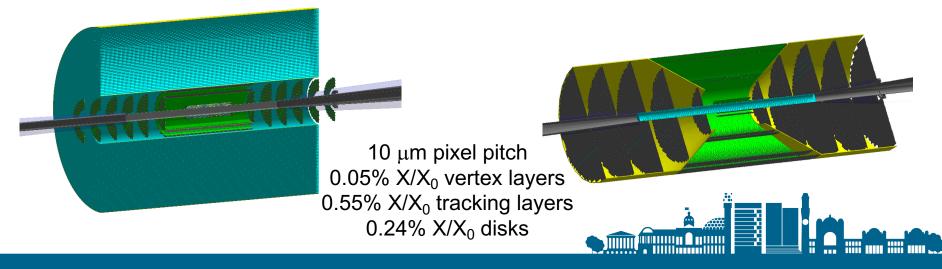




https://www.jlab.org/indico/event/400/contribution/10/mat erial/slides/0.pdf



#### ITS3 sensor specifications




## **Specifications**

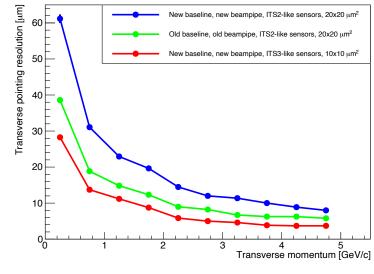
| Parameter                 | ALPIDE (existing)                                      | Wafer-scale sensor (this proposal)    |
|---------------------------|--------------------------------------------------------|---------------------------------------|
| Technology node           | 180 nm                                                 | 65 nm                                 |
| Silicon thickness         | 50 μm                                                  | 20-40 μm                              |
| Pixel size                | 27 x 29 μm                                             | O(10 x 10 μm)                         |
| Chip dimensions           | 1.5 x 3.0 cm                                           | scalable up to 28 x 10 cm             |
| Front-end pulse duration  | $\sim 5 \ \mu s$                                       | $\sim 200 \text{ ns}$                 |
| Time resolution           | $\sim 1 \ \mu s$                                       | < 100 ns (option: <10ns)              |
| Max particle fluence      | $100 \text{ MHz/cm}^2$                                 | $100 \text{ MHz/cm}^2$                |
| Max particle readout rate | $10 \text{ MHz/cm}^2$                                  | $100 \text{ MHz/cm}^2$                |
| Power Consumption         | $40 \text{ mW/cm}^2$                                   | $< 20 \text{ mW/cm}^2$ (pixel matrix) |
| Detection efficiency      | >99%                                                   | > 99%                                 |
| Fake hit rate             | $< 10^{-7}$ event/pixel                                | < 10 <sup>-7</sup> event/pixel        |
| NIEL radiation tolerance  | $\sim 3 \text{ x } 10^{13} \text{ 1 MeV } n_{eq}/cm^2$ | $10^{14} 1 \text{ MeV } n_{eq}/cm^2$  |
| TID radiation tolerance   | 3 MRad                                                 | 10 MRad                               |

### EIC SVT

- A well integrated, large acceptance Silicon Vertex and Tracking (SVT) detector designed with high granularity and low material budget is planned for the Electron-Ion Collider to enable high precision measurements that are key to its science programme
  - Expected start of operation approximately 2030
- □ Two baseline configurations are studied, based on ITS3 sensor technology
  - Hybrid, i.e. silicon SVT complemented by gas outer tracker and end-caps, ~12m<sup>2</sup>
  - All-silicon compact design, ~15m<sup>2</sup>
  - Vertex and tracking layers in the central region, disks in the forward/backward region



### ITS3-derived EIC SVT


- Common development with ITS3
  - ITS3 sensor specifications meet or even exceed the EIC requirements
  - Timescale largely compatible
- Studies are ongoing to adopt the ITS3 detector concept for the vertex layers
  - Needed to achieve the required vertex resolution with larger diameter beam pipe
- □ Cost and yield of stitched wafer-scale sensors not compatible with use in the EIC detector outside the vertex layers → a reticle-size sensor version needed for the EIC tracking layers and disks

Fake Hit Rate [hits/s]



Interface Benuirements EIC MAPS sensor requirements

| Parameter                            | EIC Vertex and Tracking MAPS |  |
|--------------------------------------|------------------------------|--|
|                                      | 65 nm                        |  |
| Technology                           | (Backup: 180 nm)             |  |
| Substrate Resistivity [kohm cm]      | 1 or higher                  |  |
| Collection Electrode                 | Small                        |  |
| Detector Capacitance [fF]            | <5                           |  |
| Chip size [cm x cm]                  | Full reticule or stitched    |  |
| Pixel size [μm x μm]                 | 20 x 20                      |  |
| Integration Time [µs]                | 2                            |  |
| Timing Resolution [ns]               | < 9 (optional)               |  |
| Particle Rate [kHz/mm <sup>2</sup> ] | TBD                          |  |
| Readout Architecture                 | Asynchronous                 |  |
| Power [mW/cm <sup>2</sup> ]          | < 20                         |  |
| NIEL [1MeV neq/cm <sup>2</sup> ]     | 10 <sup>10</sup>             |  |
| TID [Mrad]                           | < 10                         |  |
| Noise [electrons]                    | < 50                         |  |
| Fake Hit Rate [hits/s]               | < 10 <sup>-5</sup> /evt/pix  |  |
| Interface Requirements               | TBD                          |  |

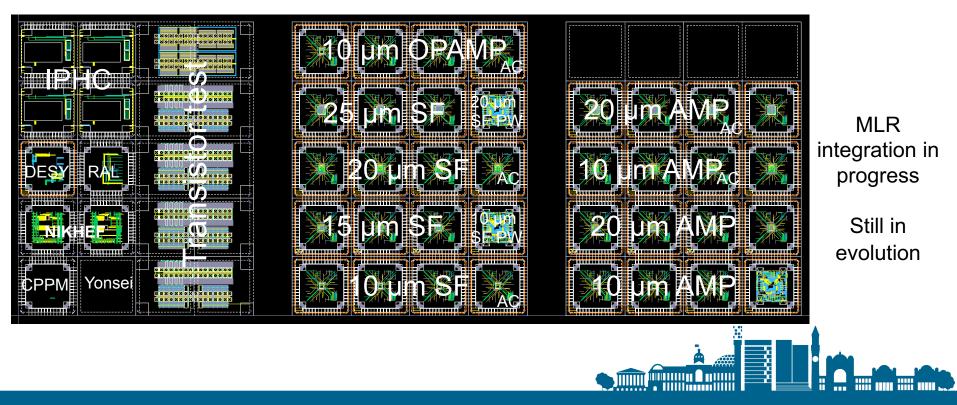


eR25 project; Birmingham, LBNL, RAL; https://wiki.bnl.gov/conferences/images/6/6d/ERD25-Report-FY21Proposal-Jun20.pdf

### Technology exploration and sensor design status

- Collaborative framework being prepared by CERN in discussion with interested institutes in the EP R&D WP1.2, pursuing monolithic sensors development in more advanced technologies
- Technology exploration planned over two MLR runs
  - Work on MLR1 is being finalized, in a collaboration with several institutes, see next slide
  - MLR2 to follow, possibly next year, other institutes joining to participate
- Technology investigation and sensor development also driven by the first application, the ITS3 effort toward a large area, low power and high resolution sensor for the inner pixel layers of the ALICE experiment
- □ Full stitched sensor development planned over three engineering runs

### Technology access and progress on MLR1


- Initial exploration of technology
  - Transistor test structures and ring oscillators for radiation hardness studies
  - Analogue pixel test structures for charge collection studies
  - Prototype IP blocks: bandgap reference, LVDS and CML line driver, ...
- Participating institutes
  - CERN, CPPM, DESY, Yonsei University Seoul, IPHC Strasbourg, NIKHEF Amsterdam, RAL/Uni Birmingham/LBNL (EIC institutes)
- Access cleared for participating groups mid July (Yonsei end of August), PDK installed immediately after
- Excellent contact with foundry



#### MLR1

Significant amount of work by all designers in the different teams

- Several questions on devices, design rules and others gathered and addressed to foundry
- Challenging but significant learning
- At present everyone on full-custom flow, IPHC put in place first digital flow
- □ Mock tape-out exercised in September, submission planned 15 November



### Conclusion

- The HEP community is starting exploration of 65 nm CMOS imaging technologies to develop MAPS in more advanced technologies
  - Improved performance, lower cost/unit area ...
- Work also driven by the ALICE ITS3 project toward the design of a large area, low power, high resolution MAPS sensor for the HL-LHC
  - Interesting for other applications (EIC already participating, planned e+ecolliders)
- First technology selected, modus operandi agreed with foundry, access to PDK in place and first submission scheduled on 15<sup>th</sup> of November

