Higgs self-couplings for extended Higgs sectors

Shinya KANEMURA (Osaka U.)

兼村 晋哉 (大阪大学)

2020 International Workshop on CEPC, Shanghai, China 26 October 2020

Beyond the SM

SM is a good description of the nature around the EW scale, however

 Gravity
Unification
Flavor

 Problems

 No principle in the Higgs sector

 Beyond SM phenomena

 Neutrino oscillation
Dark matter
Baryon asymmetry
...

SM must be replaced by a more fundamental theory

Higgs sector is the key

Although the Higgs boson was found, the Higgs sector remains unknown

Elementary or composite? Multiplet Structure? Higgs potential (Dynamics of EWSB, EWPT, ...) Yukawa structure (Flavor Physics, CPV, ...)

```
Higgs sector:
no principle
```

The SM Higgs sector can be modified

⇒ BSM phenomena may be explained

Testable at future collider experiments

Tiny neutrino mass Phase Transition (1st Order) CPV sources for baryogenesis DM candidates

. . .

Higgs sector is an important probe of new physics

Extended Higgs sectors?

Multiplet Structure (with additional scalars)

- Φ_{SM} + Isospin Singlet,
- Φ_{SM} + **Doublet (2HDM)**,
- Φ_{SM} + Triplet,

. . .

Additional Symmetry

Discrete or Continuous?

Exact or Approximate or Softly broken?

Interaction

Weakly coupled or Strongly Coupled?

Hint for BSM models

Simple example: 2HDM (softly-broken Z₂)

$$\begin{split} V_{\mathsf{THDM}} &= +m_1^2 \left| \Phi_1 \right|^2 + m_2^2 \left| \Phi_2 \right|^2 - \frac{m_3^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right)}{\left| \Phi_1 \right|^4 + \frac{\lambda_2}{2} \left| \Phi_2 \right|^4 + \lambda_3 \left| \Phi_1 \right|^2 \left| \Phi_2 \right|^2} \\ &+ \lambda_4 \left| \Phi_1^{\dagger} \Phi_2 \right|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + (\text{h.c.}) \right] \end{split}$$

 $\Phi_1 \text{ and } \Phi_2 \Rightarrow \underline{h}, \quad \underline{H}, \quad A^0, \ \underline{H^{\pm}} \oplus \text{ Goldstone bosons}$ $\uparrow \qquad \uparrow \qquad \uparrow \text{charged}$ CPeven CPodd

$$\begin{split} & \int & m_h^2 = v^2 \left(\lambda_1 \cos^4\beta + \lambda_2 \sin^4\beta + \frac{\lambda}{2} \sin^2 2\beta\right) + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \\ & & \\ & m_H^2 = M_{\text{soft}}^2 + v^2 \left(\lambda_1 + \lambda_2 - 2\lambda\right) \sin^2\beta \cos^2\beta + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \end{split}$$

masses

$$\begin{split} m_{H}^{2} &= M_{\rm soft}^{2} - \frac{\lambda_{4} + \lambda_{5}}{2}v^{2}, \\ m_{A}^{2} &= M_{\rm soft}^{2} - \lambda_{5}v^{2}. \end{split} \qquad \qquad M_{\rm soft}: \text{ soft breaking scale} \end{split}$$

$$\Phi_i = \begin{bmatrix} w_i^+ \\ \frac{1}{\sqrt{2}}(h_i + v_i + ia_i) \end{bmatrix} \quad (i = 1, 2)$$

Diagonalization

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} H \\ h \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} z^0 \\ A^0 \end{bmatrix}$$
$$\begin{bmatrix} w_1^{\pm} \\ w_2^{\pm} \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} w^{\pm} \\ H^{\pm} \end{bmatrix}$$
$$\begin{pmatrix} v_2 \\ v_1 \end{bmatrix} \equiv \tan \beta$$
$$M_{\text{soft}} \quad \left(= \frac{m_3}{\sqrt{\cos \beta \sin \beta}} \right):$$

soft-breaking scale of the discrete symm.

Two Possibilities satisfying current data

Decoupling

6

Alignment without decoupling

Small deviation $(\kappa_v \neq 1) = \text{New Scale}$

No-Lose Theorem Lee, Quigg, Thacker 1977

Unitarity: Higgs boson must appear below 1 TeV, Otherwise, new physics must appear below 1TeV

HL-LHC and the Higgs Factory (CEPC) can explore cases of $\kappa \neq 1$ but not the case of $\kappa = 1$

Region of alignment without decoupling can be explored by higher energy e+ecollisions, and also by the *hhh* measurement

Regions of alignment without decoupling

For near alighment cases, all the parameter regions are excluded by 95%CL

Aiko, SK, Kikuchi, Mawatari, Sakurai, Yagyu, 2020

Higgs Potential

Dynamics of EWSB $SU(2)_I \times U(1)_Y \rightarrow U(1)_{em}$

It is very important to know the *hhh* coupling to reconstruct the Higgs potential

$$V_{\text{Higgs}} = \frac{1}{2} \underline{m_h^2 h^2} + \frac{1}{3!} \underline{\lambda_{hhh}} h^3 + \frac{1}{4!} \lambda_{hhhh} h^4 + \cdots$$

$$10^{-10}$$
 5^{-10} -5^{-10} -5^{-10} -5^{-10} -10^{-10} -2000 -2000 -4

Non-decoupling effect

~ 70%

> 22%

2HDM

> 60% EFT (dim6)

EWSB by Coleman Weinberg Mechanism : EW Baryogenesis (1st Order Phase Trasition) :

Sensitive to the new physics scenario!

The hhh measurement is crucial

The hhh coupling in extended Higgs sectors

10

1st Order Phase Transition

Electroweak Baryogenesis

Sakharov 3rd condition Departure from Thermal Equilibrium

Sphaleron Decoupling condition

$$\Gamma_{sph} < H(T_c)$$

$$\Gamma_{sph} < H(T_c)$$

$$\Gamma_{e^{-\alpha' \varphi c/Tc}}$$

$$\varphi_c$$

$$\varphi_c$$

$$\Gamma_c \gtrsim 1$$

$$\Gamma_{sph} \sim e^{-Esph/Tc}$$

$$\varphi_c$$

$$\varphi_c$$

$$\varphi_c$$

High Temp Exp. $V_{\text{eff}}(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{A}\varphi^4 + \cdots$

$$\frac{\varphi_C}{T_C} = \frac{2E}{\lambda_T} = \frac{6m_W^3 + 3m_Z^3 + \cdots}{3\pi v m_h^2} \ll 1 \qquad \begin{array}{l} \text{SM with } \mathbf{m_h} = 125 \text{GeV}, \\ \mathbf{1^{st} OPT not realized}_{12} \end{array}$$

 $V_{\rm eff}(\varphi, T)$

1st Order Phase Transition

Extended Higgs: Strongly 1st OPT possible

Quantum effect of additional Scalar field Φ (= *H*, *A*, *H*⁺, ···)

Improvement for the Sphaleron Decoupling Condition

Sphaleron decoupling condition

 $v_c/T_c > \zeta_{sph}(T_c)$

 $\begin{array}{c} \hline \text{can be determined} \\ \Delta \ \lambda_{\ hhh} \Rightarrow \mathsf{E}_{\mathsf{sph}}(0) \Rightarrow \mathsf{E}_{\mathsf{sph}}(\mathsf{Tc}) \Rightarrow \ \boldsymbol{\zeta}_{\ \mathsf{sph}}(\mathsf{Tc}) \end{array}$

N=4 Scalar Model (2HDM) The decoupling condition can be satisfied when $\Delta \lambda_{hhh} > 22\%$ SK, M. Tanaka (2020) Sphaleron decoupling condition at Tc and the hhh coupling at T=0 $\,$

Consistency of the model can be tested

Future measurement of the hhh coupling

HE-LHC, FCC_{hh} , …

- $pp \to hhX$
- ILC500, ILC1000, CLIC, …

$$e^+e^- \to Zhh$$

 $e^+e^- \to \nu\overline{\nu}hh$

The triple Higgs coupling is expected to be measured with 10% at ILC1000, CLIC3000, FCC_{hh}, …

arXiv: 1905.03764

We do not miss to test the 1st order phase transition for EW baryogenesis

Summary

- Higgs sector is a probe of new physics
- Possibilities of Extended Higgs (1st OPT, CPV, SUSY, DM, \cdots)
- HL-LHC and future Higgs factories (ILC250, CEPC, FCCee) can explore cases with near alignment almost completely
- Just decoupling? Or alignment without decoupling? ($\kappa = 1$)
- This is explored by measuring the *hhh* coupling
- Scenarios of the alignment without decoupling (for EW baryogenesis) can be tested by looking whether a large deviation Δ λ $_{hhh}$ is detected or not at FCC $_{hh,}$ ILC1000, CLIC, ...

Thank you for your attention!