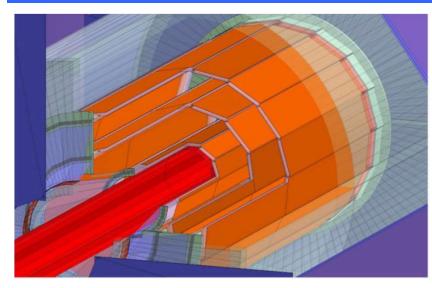


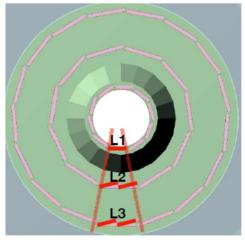
Status of the TaichuPix chip for the highrate CEPC Vertex Detector

Wei Wei On behalf of the CEPC MOST2 Vertex detector design team

2020-10-26


CEPC Workshop 20201026

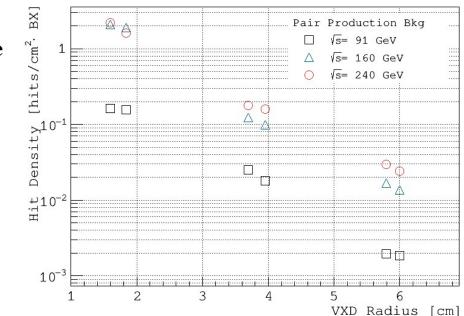
Outline


- TaichuPix concept for high rate CEPC vertex detector
- Chip architecture
- Preliminary test results

CEPC Vertex Detector Concept


3-layers of double-sided pixel sensors

Ref: Pixel Vertex Detector Prototype MOST 2018-2023 (MOST2), Joao Costa, 2019.11


	تو	R(mm).	z (mm).	σ(μm).
Ladder1-{	Layer1.	16.	62.5.	2.8.
Ĺ	Layer2.	18 ₄	62.5e	6.
Ladder2-{	Layer3.	37.	125-	4 .
	Layer4.	39.	125.	4 .
Ladder3-	Layer5-	58÷	125 -	4.
	Layer6.	<mark>60</mark> ∉	125.	4.
50µm sensor			to ci	ontrol board
	1	1	low mass flex	

A ladder module conceptual design

Challenges and R&D activities on pixel sensors

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$
- Hit rate: 120MHz/chip @W

From the CDR of CEPC

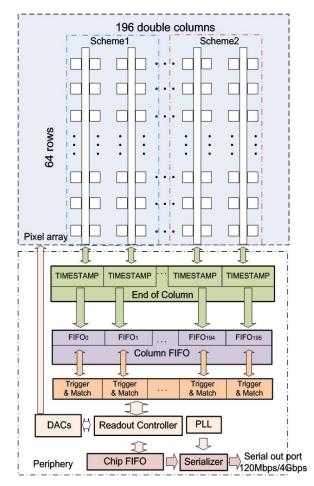
Challenges and R&D activities on pixel sensors

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$
- Hit rate: 120MHz/chip @W

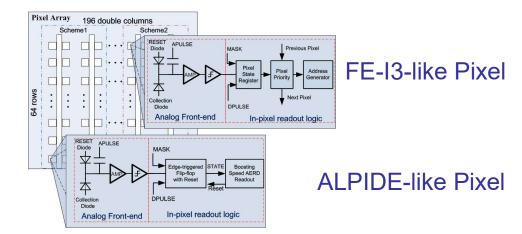
- Two major constraints for the CMOS sensor
 - Pixel size: < 25μm* 25μm (σ~5μm)
 - aiming for 16μm*16μm (σ~3μm)
 - Readout speed: bunch crossing @ 40MHz
- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- TID is also a constraint
 - 1~2.5Mrad/year as required in MOST2 is achievable

		ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	 ✓ 	Х	~
Readout Speed	Х	 	Х
TID	X (?)	 	~

Main specs of the full size chip for high rate vertex detector


9

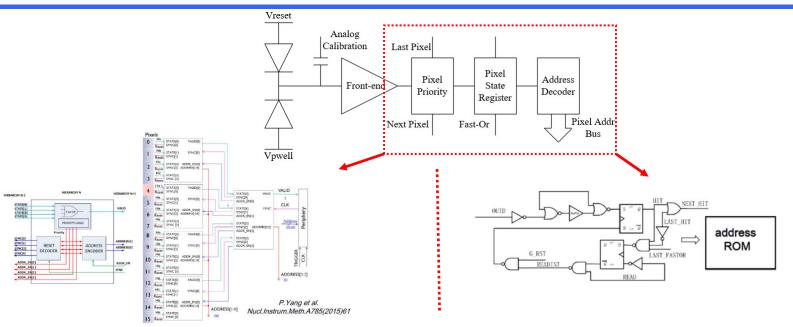
- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$
- Hit rate: 120MHz/chip @W


- Two major constraints for the CMOS sensor
 - Pixel size: < 25μm* 25μm (σ~5μm)
 - aiming for 16μm*16μm (σ~3μm)
 - Readout speed: bunch crossing @ 40MHz
- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- TID is also a constraint
 - 1~2.5Mrad/year as required in MOST2 is achievable

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pixel array	512row×1024col
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Power Density	< 200mW/cm ² (air cooling)
		Dead time	<500ns for 98% efficiency	Chip size	~1.4cm×2.56cm

New proposed architecture

From Tianya Wu in User Manual

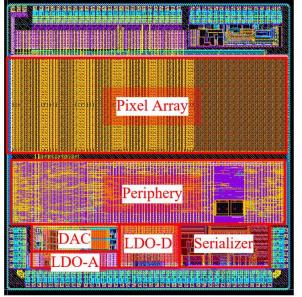


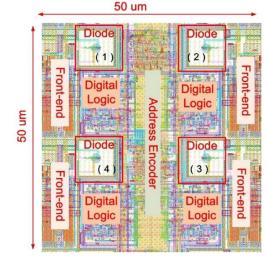
- Similar to the ATLAS ITK readout architecture: "columndrain" readout
 - Priority based data driven readout, zero-suppression intrinsically
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate

2-level FIFO architecture

- L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface
- Trigger readout
 - Make the data rate in a reasonable range
 - Data coincidence by time stamp, only matched event will be readout 7

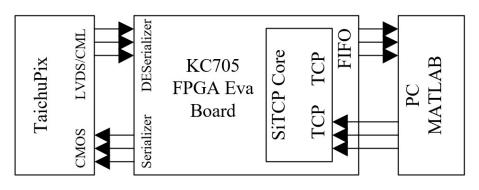
Pixel architecture – parallel digital schemes

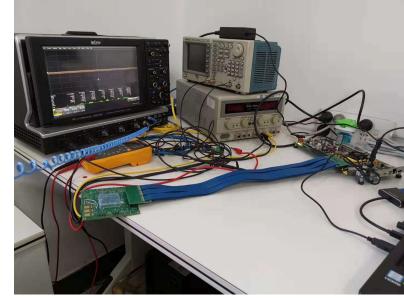



- Simplified column-drain readout:
 - Each double column shares a common Fast-Or bus for hit indication
 - Common time stamp register @40MHz will record the hit arrival time
 - Hit pixels in the same cluster will share a common time stamp as the Trigger ID
- Two parallel digital readout architectures were designed:
 - Scheme 1: ALPIDE-like: benefit from the proved digital readout in small pixel size
 - Readout speed was enhanced for 40MHz BX
 - Scheme 2: FE-I3-like: benefit from the proved fast readout @40MHz BX (ATLAS)
 - > Fully customized layout of digital cells and address decoder for smaller area

Design Status of the TaichuPix Chip

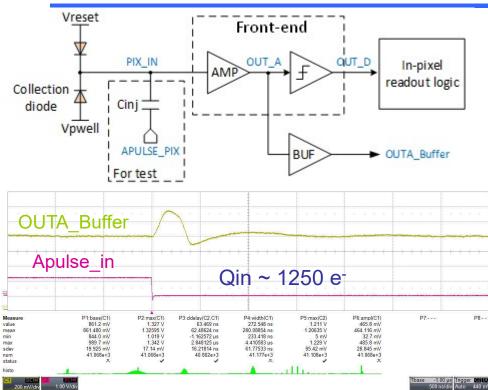
q

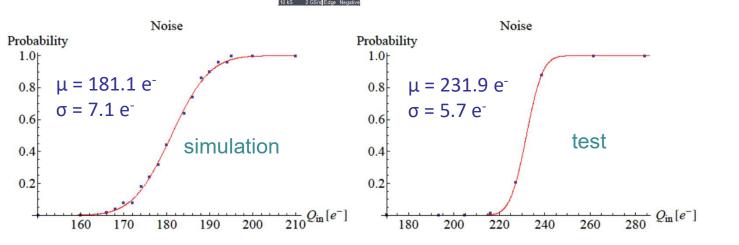



Chip size: 5mm×5mm Pixel size: 25µm×25µm

- Two MPW chips were submitted and verified
 - 1st MPW 2019.06~2019.11
 - 2nd MPW 2020.02~2020.06
 - Thanks IFAE for their tunnel for submission to TJ
- Chip size 5mm×5mm with standalone features
 - Pixel size of 25μm×25μm
 - A full functional pixel array (small scale)
 - ➢ A 64×192 Pixel array
 - Parallel designs of the pixel cell were verified in sub sectors
 - Periphery logics
 - Fully integrated logics for the data-driven readout
 - Fully digital control of the chip configuration
 - Auxiliary blocks for standalone operation
 - High speed data interface up to 4Gbps
 - > On-chip bias generation
 - > Power management with LDOs
 - IO placement in the final ladder manner
 - Multiple chip interconnection features included

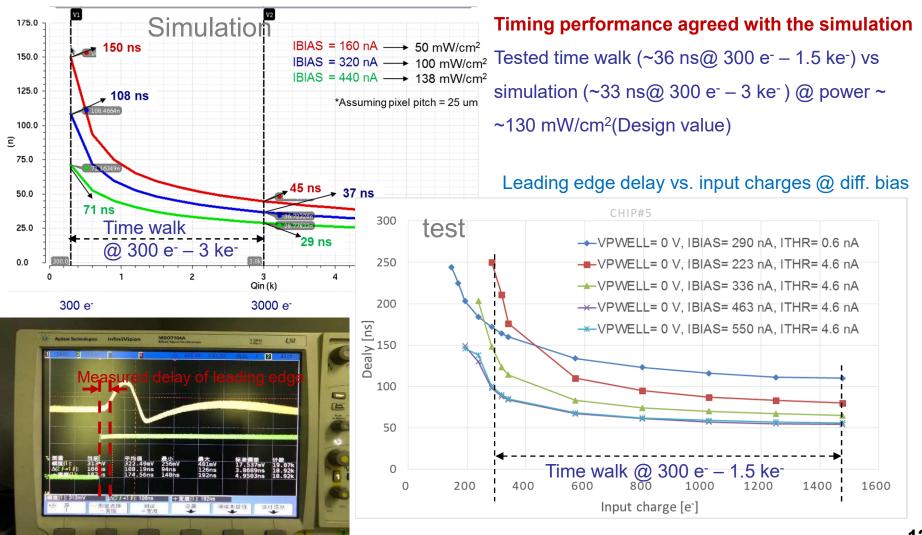
Test setup for chip evaluation



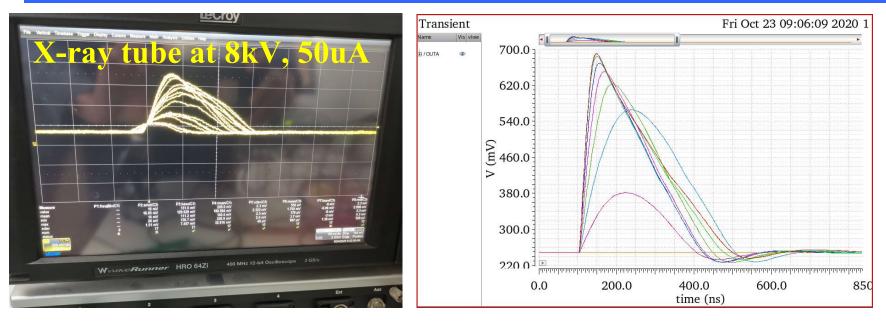


- Test setup based on KC705 Xilinx FPGA Eva board
- General data stream
 - Downstream from PC to chip: TCPIP@MATLAB → SPI package@ FPGA → TaichuPix Periphery
 - Upstream from chip to PC: TaichuPix Serializer
 → FIFO@FPGA → TCPIP@MATLAB

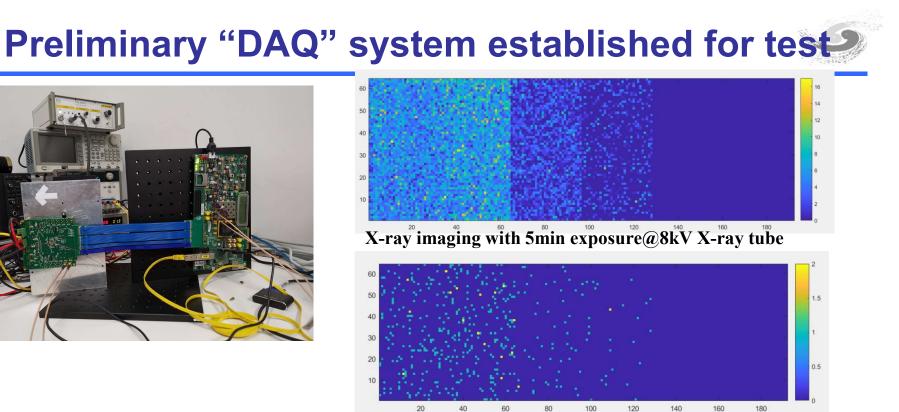
Preliminary test of the pixel analog circuit


- Pixel analog circuit was tested by injection pulses
- Preliminary test showed the output waveform agreed with simulation
- Tested noise about 5.7e⁻, a little better than simulation results

Preliminary test of the timing performance



• The delay of the analog output will decrease as the input charge increases



Preliminary verification with radioactive

- Analog output waveform agreed with the simulation when tested by X-rays
 - Signal amplitude, signal width, edge speed...all are almost agreed
 - Note: for the small signal, the S/N ratio was also good, inferred that the noise performance was also normal(good)

"single frame" X-ray imaging with 10s exposure a80 kV X-ray tube

- "DAQ" system established for the test system, with continuous data acquisition
- Triggerless readout @160Mbps LVDS were applied at the current stage
- The full signal chain (pixel analog-digital-periphery-data interface) was proved by both X-ray and laser imaging
 - Full array/sector was sensitive
 - "Single frame" imaging showing no crosstalk detected between clusters (good S/N ratio)
- X-ray imaging with 5min exposure showed clearly the different sectors of the pixel array (2 sectors were masked)

Summary and plan

- Two MPWs of TaichuPix were designed with all features integrated for standalone operation
- Major functionality and the full signal chain verified by radioactive source
- Laser test, beam test, and TID test were under consideration for more calibrated verification
- Thinking about a full size tapeout for the next

Thank you!

Team organization

• Slides from Y. Zhang, Satellite meeting of MOST2 in Oxford, 2019.4

- Design team:
 - IHEP, SDU, NWPU, IFAE & CCNU
 - Biweekly/weekly video design meeting on chip design (convened by IHEP)

Institutes	Tasks	Designers
IHEP	Full chip modeling & simulation Pixel Analog, TCAD simulation High speed interface: PLL + Serializer	Wei Wei, Ying Zhang Xiaoting Li, Weiguo Lu, Mei Zhao
CCNU/IFAE	Pixel Digital	Tianya Wu, Raimon Casanova
NWPU	Periphery Logic, LDO	Xiaomin Wei, Jia Wang
SDU	Bias generation	Liang Zhang

- Chip characterization
 - Test system development: SDU & + other interested parties
 - Electrical test: all designers supposed to be involved in the related module + other interested parties
 - Irradiation test: X-ray irradiator + beam line