Weekly Updates

Ryuta

Updates on the draft

- update the feynman diagram by a drawing tool

-> have tried from https://feynman.aivazis.com

... some functions ("text" button, "+" signal) seem to be not working ? which prevented (me) to make it lastweek, at any rate, finally the diagram is made !

Investigation around HZZ topics from the recent LHC results

-- I have quickly viewed those materials

New Higgs measurements from ATLAS using the full Run-2 dataset

Some highlights:

- *H* → *ZZ*^{*} mass measurement using new per-event resolution method → *Total unc.:* 1.6‰
- Indirect constraint on *c*-quark Yukawa coupling from differential Higgs boson momentum measurement in $H \rightarrow ZZ^*$
- Extract EFT limits from $H \rightarrow ZZ^*$ STXS measurement, taking acceptance effects into account
- Search for CP-violation in top-Yukawa couplings using *ttH+tH* production → |α| > 43° excluded at the 95% CL; pure CP-odd at 3.9σ
- Most stringent limit on tH production: < 12 x SM prediction at the 95% CL
- Observation of $ZH(\rightarrow bb)$ production
- Direct measurement of $VH(\rightarrow bb)$ production for $p_T(V) > 400 \text{ GeV}$

All measurements in good agreement with the SM prediction

Hannah Arnold (Nikhef)

-- summary page from the previous slide

Phys. Lett. B 784 (2018) 345 DOI: 10.1016/j.physletb.2018.07.050

Measurement of the Higgs boson mass in the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels with $\sqrt{s} = 13$ TeV *pp* collisions using the ATLAS detector

С	Contents					
1	Introduction	2				
2	2 ATLAS detector					
3	Data and simulated samples	3				
4	4 Muon reconstruction, identification and calibration 4					
5	5 Photon and electron reconstruction, identification and calibration 5					
6	5 Statistical methods					
7	Mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel 7.1 Event selection 7.2 Signal and background model 7.3 Results	7 7 8 9				
8	Mass measurement in the $H \rightarrow \gamma \gamma$ channel8.1Event selection and categorisation8.2Signal and background models8.3Systematic uncertainties8.4Results	10 11 11 13 13				
9	Combined mass measurement	15				
10	10 Conclusion 17					

Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4 ℓ decay channel at $\sqrt{s} = 13$ TeV

arXiv:2004.03969v2 [hep-ex] 9 Apr 2020

m₁₂ vs. m₃₄

Higgs boson production cross-section measurements and their EFT interpretation in the 4*l* decay channel at $\sqrt{s} = 13$ TeV with the ATLAS detector arXiv:2004.03447v1 [hep-ex] 7 Apr 2020

Table 9: The expected and observed confidence intervals at 68% and 95% CL on the SMEFT Wilson coefficients for an integrated luminosity of 139 fb⁻¹ at $\sqrt{s} = 13$ TeV. Only one Wilson coefficient is fitted at a time while all others are set to zero.

EFT coupling	Expected		Observed		Best-fit	Best-fit
parameter	68% CL	95% CL	68% CL	95% CL	value	p-value
CHG	[-0.004, 0.004]	[-0.007, 0.008]	[-0.005, 0.003]	[-0.008, 0.007]	-0.001	0.79
c_{uH}	[-8, 20]	[-14, 26]	[-12, 6]	[-18, 30]	-6, 18	0.50
CHW	[-1.6, 0.9]	[-2.9, 1.6]	[-1.5, 1.3]	[-3.4, 2.1]	0	
CHB	[-0.43, 0.38]	[-0.62, 0.60]	[-0.42, 0.37]	[-0.62, 0.59]	-0.0	Operator
CHW B	[-0.75, 0.63]	[-1.09, 0.99]	[-0.71, 0.63]	[-1.06, 0.99]	0. 6	O_{uH}
$c_{H\bar{G}}$	[-0.022, 0.022]	[-0.031, 0.031]	[-0.019, 0.019]	[-0.029, 0.029]	0.00	O_{HG}
$c_{\overline{u}H}$	[-26, 26]	[-40, 40]	[-37, 37]	[-50, 50]	±2 9	O_{HW}
$c_{H\overline{W}}$	[-1.3, 1.3]	[-2.1, 2.1]	[-1.5, 1.5]	[-2.4, 2.4]	±0.	\mathcal{O}_{HB}
$c_{H\bar{B}}$	[-0.39, 0.39]	[-0.57, 0.57]	[-0.37, 0.37]	[-0.56, 0.56]	0.0	-п w в
$c_{H\overline{W}B}$	[-0.71, 0.71]	[-1.05, 1.05]	[-0.69, 0.69]	[-1.03, 1.03]	0.0	1.00

roughly, the statistics of this channel with 139 fb⁻¹ is $N(signal) \sim 200$ N(background) ~ 100

	CP-even		CP-odd		
Operator	Structure	Coeff.	Operator	Structure	Coeff.
O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	C_{uH}	O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	C _{ũH}
O_{HG}	$HH^{\dagger}G^{A}_{\mu\nu}G^{\mu\nu A}$	c_{HG}	$O_{H\tilde{G}}$	$HH^{\dagger} \tilde{G}^{A}_{\mu\nu} G^{\mu\nu A}$	$c_{H\tilde{G}}$
O_{HW}	$HH^{\dagger}W^{l}_{\mu\nu}W^{\mu\nu l}$	c_{HW}	$O_{H\widetilde{W}}$	$HH^{\dagger}\widetilde{W}^{l}_{\mu u}W^{\mu u l}$	$c_{H\widetilde{W}}$
O_{HB}	$HH^{\dagger}B_{\mu u}B^{\mu u}$	C_{HB}	$O_{H\widetilde{B}}$	$HH^{\dagger}\widetilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$
O_{HWB}	$HH^{\dagger}\tau^{l}W^{l}_{\mu u}B^{\mu u}$	c_{HWB}	$O_{H\widetilde{W}B}$	$HH^{\dagger}\tau^{l}\widetilde{W}^{l}_{\mu u}B^{\mu u}$	$c_{H\widetilde{W}B}$
o 1.00					

This calue can be compared. But the formula is different, so that, I have no confidence with the factor level

EFT model

-- We have referred :

"Resolving the tensor structure of the higgs coupling to Z-bosons via Higgs-strahlung", Shankha Banerjee, Rick S. Gupta, Joey Y. Reiness and Michael Spannowsky, arXiv:1905.02728

$$\begin{split} \Delta \mathcal{L}_6^{hZ\bar{f}f} \supset &\delta \hat{g}_{ZZ}^h \frac{2m_Z^2}{v} h \frac{Z^\mu Z_\mu}{2} + \sum_f g_{Zf}^h \frac{h}{v} Z_\mu \bar{f} \gamma^\mu f \\ &+ \kappa_{ZZ} \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} + \tilde{\kappa}_{ZZ} \frac{h}{2v} Z^{\mu\nu} \tilde{Z}_{\mu\nu}. \end{split}$$

This form is obtained after reorganizing the previous equation though I do not follow it yet... (e.g. arXiv 1406.1361)

-- Amplitude is given in analytical form at first order ($\sqrt{s/Mz}$), and we have tried to reproduce the differential observables based on the formula.

-- Application to our analysis with this approximation would be an issue.

My personal consideration

- 1) Now, the same channel as the HZZ analysis has been chosen, expecting the better S/B, though the Background(=B) is not included yet.
 - -- total number of signal events ~ 100 (or less)
- -- if we deduce the first order from the right figure, it is, with my eye, $-0.8<\widetilde{\kappa}<0.8$ where this range is decided by Chi2/N_{dof}<1
- 2) from the studies, using the production channel, it is as follows:
 - -- total number of signal events ~ several * 10000
 - -- depending on the parameters, the order is such as -0.03(5) < param. < 0.03(5)

It just shows that the limitation range reflects the statistical uncertainty.

from past slide

from arXiv 1512.06877 (Liantao/Jiyayin point me) but it shows the same order in the CEPC white paper

Short summary

- EFT study , but statistics is clearly an issue. (Technically, the generator, and of course, interpretation would be another)
- differential cross-section could be a point
- Mass, cross-section (<--actually we are doing)

- Purely compose the paper with the current analysis
 - -- BDT & simultaneous signal handling
 - -- adding electron channel. with IP information ?
- At least, we have to present/prepare answers between our current results and the result in the white paper

Backup

Beyond (only in my head)

- Since I'm going to touch the jet algorithm (LCFIplus),
 - -- analysis and evaluation of HZZ channel with 4 or 6 quarks
 - -- EFT model with those status

or

-- Trying to think about the application of quantum computing ...

-- but those could be considered at least a few months later