

Memo version 1.1

CEPC Analysis Memo

2	May 5, 2020
3	Higgs boson decaying to ZZ* channel at the CEPC
4 5	Yanxi Gu ^a , Min Zhong ^a , Lingteng Kong ^b , Ryuta Kiuchi ^b , Xin Shi ^b , Shih-Chieh Hsu ^c , and Xinchou Lou ^b
6 7 8	^a Department of Modern Physics, University of Science and Technology of China, Hefei, China ^b Institute of High Energy Physics, Beijing 100049, People's Republic of China ^c Department of Physics, University of Washington, Seattle 98195-1560, USA
9 10	
12	Abstract
13 14	The precision of the yield measurement of the Higgs boson decaying into two Z bosons process at the Circular Electrion-Positron Collider (CEPC) is evaluated. Including the recoil
15 16	Z boson associated with the Higgs production (Higgsstrahlung) total three Z bosons involves for this channel, from which final states characterized by the presence of a pair of leptons,

quarks, and neutrinos are chosen for the signal. After the event selection, the precision of σ_{ZH} ·Br(H \rightarrow ZZ) is estimated to be 9.71%.

20 Contents

21	1	Intro	oduction		4
22	2	Sam	ples		6
23		2.1	ZH Sam	ples	6
24		2.2	Two ferm	nions background Samples	8
25		2.3	Four ferr	nions background Samples	9
26	3	Ana	lysis Proc	edure	11
27	4	Ever	nt Selectio	on of $\mathbf{Z}(\rightarrow \mu\mu)\mathbf{H}(\mathbf{Z}\mathbf{Z}^*\rightarrow \nu\nu qq)$	15
28		4.1	$Z(\rightarrow \mu^+ \mu$	μ^{-} , H(Z $\rightarrow \nu\bar{\nu}$, Z* $\rightarrow q\bar{q}$)	15
29			4.1.1 H	Event selection (Cut-based only)	15
30			4.1.2 H	Event selection combined with BDT method	22
31		4.2	$Z(\rightarrow \mu^+ \mu$	μ^{-}), H(Z $\rightarrow q\bar{q}, Z^{*} \rightarrow \nu\bar{\nu}$)	25
32			4.2.1 H	Event selection (Cut-based only)	25
33			4.2.2 H	Event selection combined with BDT method	32
	_	Eve			
34	5	Lver	nt Selectio	on of $\mathbf{Z}(\rightarrow \nu\nu)\mathbf{H}(\mathbf{ZZ}^*\rightarrow\mu\mu qq)$	36
34 35	2	5 .1	t Selection $Z(\rightarrow v\bar{v})$	on of $\mathbf{Z}(\rightarrow\nu\nu)\mathbf{H}(\mathbf{Z}\mathbf{Z}^*\rightarrow\mu\mu qq)$, $\mathbf{H}(\mathbf{Z}\mathbf{Z}^*\rightarrow\mu^+\mu^-\rightarrow q\bar{q})$	36 36
34 35 36	2	5.1	The selection $Z(\rightarrow v\bar{v})$ 5.1.1 H	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only)	36 36 36
34 35 36 37	2	5.1	The selection $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method	36 36 36 43
34 35 36 37 38	2	5.1 5.2	The selection $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$	 36 36 36 43 46
34 35 36 37 38 39	2	5.1 5.2	The selection of the selection $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only)	 36 36 36 43 46 46
 34 35 36 37 38 39 40 	2	5.1 5.2	Selectic $Z(\rightarrow v\bar{v})$ $5.1.1$ $5.1.2$ $Z(\rightarrow v\bar{v})$ $5.2.1$ $F_{5.2.2}$ $F_{5.2.2}$	on of $Z(\rightarrow\nu\nu)H(ZZ^*\rightarrow\mu\mu qq)$, $H(ZZ^*\rightarrow\mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow\mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method	 36 36 36 43 46 46 52
 34 35 36 37 38 39 40 41 	6	5.1 5.2 Ever	The selection $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H 5.2.2 H The selection	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method	 36 36 36 43 46 46 52 56
 34 35 36 37 38 39 40 41 42 	6	 5.1 5.2 Even 6.1 	t Selectic $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H 5.2.2 H t Selectic $Z(\rightarrow q\bar{q})$,	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method Event selection combined with BDT method Event selection combined with BDT method	36 36 36 43 46 46 52 56 56
 34 35 36 37 38 39 40 41 42 43 	6	 5.1 5.2 Even 6.1 	The selectic $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H 5.2.2 H The selectic $Z(\rightarrow q\bar{q})$, 6.1.1 H	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method Do of $Z(\rightarrow qq)H(ZZ^*\rightarrow vv\mu\mu)$ $H(Z\rightarrow v\bar{v}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only)	36 36 36 43 46 46 52 56 56 56
 34 35 36 37 38 39 40 41 42 43 44 	6	 5.1 5.2 Even 6.1 	The selectic $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H 5.2.2 H 5.2.2 H $Z(\rightarrow q\bar{q}),$ 6.1.1 H 6.1.2 H	on of $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method on of $Z(\rightarrow qq)H(ZZ^*\rightarrow vv\mu\mu)$ $H(Z\rightarrow v\bar{v}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection (Cut-based only) Event selection (Cut-based only)	36 36 43 46 46 52 56 56 56 63
 34 35 36 37 38 39 40 41 42 43 44 45 	6	 Even 5.2 Even 6.1 6.2 	t Selectic $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H 5.2.2 H t Selectic $Z(\rightarrow q\bar{q}),$ 6.1.1 H 6.1.2 H $Z(\rightarrow q\bar{q}),$	on of $Z(\rightarrow \nu\nu)H(ZZ^*\rightarrow\mu\mu qq)$, $H(ZZ^*\rightarrow\mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow\mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method Do of $Z(\rightarrow qq)H(ZZ^*\rightarrow\nu\nu\mu\mu)$ $H(Z\rightarrow\nu\bar{\nu},Z^*\rightarrow\mu^+\mu^-)$ Event selection (Cut-based only) Event selection (Cut-based only) Event selection (Cut-based only) Event selection combined with BDT method Event selection (Cut-based only) Event selection combined with BDT method $H(Z\rightarrow\mu^+\mu^-, Z^*\rightarrow\nu\bar{\nu})$	36 36 43 46 46 52 56 56 56 63 66
 34 35 36 37 38 39 40 41 42 43 44 45 46 	6	 Even 5.1 5.2 Even 6.1 6.2 	The Selectic $Z(\rightarrow v\bar{v})$ 5.1.1 H 5.1.2 H $Z(\rightarrow v\bar{v})$ 5.2.1 H 5.2.2 H The Selectic $Z(\rightarrow q\bar{q})$, 6.1.1 H 6.1.2 H $Z(\rightarrow q\bar{q})$, 6.2.1 H	on of $Z(\rightarrow \nu\nu)H(ZZ^*\rightarrow \mu\mu qq)$, $H(ZZ^*\rightarrow \mu^+\mu^-\rightarrow q\bar{q})$ Event selection (Cut-based only) Event selection combined with BDT method , $H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method on of $Z(\rightarrow qq)H(ZZ^*\rightarrow \nu\nu\mu\mu)$ $H(Z\rightarrow \nu\bar{\nu}, Z^*\rightarrow \mu^+\mu^-)$ Event selection (Cut-based only) Event selection combined with BDT method Event selection (Cut-based only) Event selection combined with BDT method Event selection (Cut-based only) Event selection (Cut-based only) Event selection (Cut-based only)	 36 36 36 43 46 46 52 56 56 56 63 66 66

48	7	Resu	lt		77
49		7.1	summa	ry of event selection	77
50			7.1.1	summary of event selection (cut-based only)	77
51			7.1.2	summary of event selection (BDT)	77
52		7.2	Final H	liggs mass distributions and fitting results.	78
53			7.2.1	$\mu\mu\nu\nu qq$ channel	78
54			7.2.2	$\mu\mu qq v v$ channel	79
55			7.2.3	<i>ννμμqq</i> channel	80
56			7.2.4	$\nu \nu q q \mu \mu$ channel	81
57			7.2.5	$qq\nu\nu\mu\mu$ channel	82
58			7.2.6	$qq\mu\mu\nu\nu$ channel	83
59		7.3	Calcula	ations	84
60			7.3.1	Cut-based calculations	84
61			7.3.2	BDT-based calculations	85
62			7.3.3	Comparison between cut-based and BDT	86
63	8	Back	kup		87
64		8.1	v1.0 re	sult conclusion	87

65 ChangeLog

66 Version 1.2

- 5/05/2020: Add BDT sections (six parallel channels), including event selections and fitting results,
 as well as some descriptions in Chapter 'AnalysisProcedure'.
- 4/28/2020: Use the unified set of selections.

70 Version 1.1

• 4/22/2020: 1.Unifying some of the selections and put them in comparison. 2.Modify event selection table slightly

73 Version 1.0

- Six parallel channel cut-based event selection
- HZZ branch ratio and its precision

76 **version 0.6**

- Change some plot size etc. to make the pdf file after compiling in good order
- Update fitting results (both cut-based and BDT) for 5 channels
- Fill the structure with plots/tables for each channel (" $\mu\mu$ ", " $\nu\nu$ ", "qq" channels)

80 version 0.5

- Update(add) author information
- Change the section numbering so as to start it from the introduction.
- Update the references which was not working, in the introduction section
- Add "Analysis Procedure" section. Add general desription about our analysis framework.
- Make a structure for each channel (" $\mu\mu$ ", " $\nu\nu$ ", "qq" channels)

86 Version 0.4

• Display the result of hvvjj channel

88	Version 0.4.1
89	• Add pictures of signal's cut conditions
90	Version 0.4.2
91	Add background distribution
92	Version 0.4.2
93	• change samples and update pictures and cut flow table
94	Version 0.4.3
95	• 3/19/2019: 1.Update sample table, cut flow table and histograms, now the background in his-
96	tograms are 2f, 4f and ZH. 2.Add present state of hjjvv channel.
97	Version 0.4.4
98	• 4/25/2019: 1.Update results. 2. add equations for calculation
99	Version 0.4.5

• 5/10/2019: 1.Add introduction. 2. Add more for calculation part

101 1 Introduction

The historic discovery of a Higgs boson in 2012 by the ATLAS and CMS collaborations [1, 2] at the 102 Large Hadron Collider (LHC) has opened a new era in particle physics. Subsequent measurements of the 103 properties of the new particle have indicated compatibility with the Standard Model (SM) Higgs boson [3, 104 4, 5, 6, 7, 8, 9]. While the SM has been remarkably successful in describing experimental phenomena, it 105 is important to recognize that it is not a complete theory. In particular, it does not *predict* the parameters 106 in the Higgs potential, such as the Higgs boson mass. The vast difference between the Planck scale 107 and the weak scale remains a major mystery. There is not a complete understanding of the nature of 108 electroweak phase transition. The discovery of a spin zero Higgs boson, the first elementary particle of 109 its kind, only sharpens these questions. It is clear that any attempt of addressing these questions will 110 involve new physics beyond the SM (BSM). Therefore, the Higgs boson discovery marks the beginning 111 of a new era of theoretical and experimental explorations. 112

A physics program of the precision measurements of the Higgs boson properties will be a critical component of any road map for high energy physics in the coming decades. Potential new physics beyond the SM could lead to observable deviations in the Higgs boson couplings from the SM expectations. Typically, such deviations can be parametrized as

$$\delta = c \frac{v^2}{M_{\rm NP}^2},\tag{1}$$

where v and $M_{\rm NP}$ are the vacuum expectation value of the Higgs field and the typical mass scale of new 117 physics, respectively. The size of the proportionality constant c depends on the model, but it should not 118 be much larger than O(1). The high-luminosity LHC (HL-LHC) will measure the Higgs boson couplings 119 to about 5% [10, 11]. At the same time, the LHC will directly search for new physics from a few hundreds 120 of GeV to at least one TeV. Eq. 1 implies that probing new physics significantly beyond the LHC reach 121 would require the measurements of the Higgs boson couplings at least at percent level accuracy. To 122 achieve such precision will need new facilities, a lepton collider operating as a Higgs factory is a natural 123 next step. 124

The Circular Electron-Positron Collider CEPC, proposed by the Chinese particle physics community, is one of such possible facilities. The CEPC will be placed in a tunnel with a circumference of approximately 100 km and will operate at a center-of-mass energy of $\sqrt{s} \sim 240$ GeV, near the maximum of the Higgs boson production cross section through the $e^+e^- \rightarrow ZH$ process. At the CEPC, in contrast to the LHC, Higgs boson candidates can be identified through a technique known as the recoil mass method without tagging its decays. Therefore, the Higgs boson production can be disentangled from its decay in a model independent way. Moreover, the cleaner environment at a lepton collider allows much better

exclusive measurements of Higgs boson decay channels. All of these give the CEPC an impressive reach 132 in probing Higgs boson properties. With the expected integrated luminosity of $5.6 fb^{-1}$, over one million 133 Higgs bosons will be produced. With this sample, the CEPC will be able to measure the Higgs boson 134 coupling to the Z boson with an accuracy of 0.25%, more than a factor of 10 better than the LHC. Such a 135 precise measurement gives the CEPC unprecedented reach into interesting new physics scenarios which 136 are difficult to probe at the LHC. The CEPC also has strong capability in detecting Higgs boson invisible 137 decay. It is sensitive to the invisible decay branching ratio down to 0.3%. In addition, it is expected to 138 have good sensitivities to exotic decay channels which are swamped by backgrounds at the LHC. It is 139 also important to stress that an e^+e^- Higgs factory can perform model independent measurement of the 140 Higgs boson width. This unique feature in turn allows for the model independent determination of the 141 Higgs boson couplings. 142

P.S. Above description given by Lineteng is almost the same as the first section of the CEPC white
 paper.(2019-12-08)

145 **2** Samples

The analysis is performed on MC samples simulated on the CEPC conceptual detector. Sample path: $/cefs/data/DstData/CEPC240/CEPC_v4/$, the details of samples is listed below, and the events expected is $5600fb^{-1}$

uq : u, ū	$up: u, \bar{u}, c, \bar{c}$	$nu_e: v_e, \overline{v}_e$
$dq:d,\bar{d}$	$down: d, \bar{d}, s, \bar{s}, b, \bar{b}$	$nu_{\mu}: v_{\mu}, \overline{v}_{\mu}$
$cq:c,\bar{c}$	$e:e^-,e^+$	$nu_{\tau}: v_{\tau}, \overline{v}_{\tau}$
$sq:s, \bar{s}$	$mu:\mu^-,\mu^+$	$nu_{\mu,\tau}:v_{\mu,\tau},\overline{v}_{\mu,\tau}$
$bq:b,ar{b}$	$tau: \tau^-, \tau^+$	$nu: v_{e,\mu,\tau}, \overline{v}_{e,\mu,\tau}$
$f:e^{-},\mu,\pi$	$\tau, \nu_e, \nu_\mu, \nu_\tau, u, d, c, s, b$	q:u,d,c,s,b

Table 1: The alias for particles

149 2.1 ZH Samples

ProcessCross sectionEvents expectedele1h_aa0.016190.24855ele1h_az0.010860.5394ele1h_bb4.0622758.33ele1h_cc0.2051149.1275ele1h_e2e20.001548.63247ele1h_e3e30.4452494.4475ele1h_gg0.6033380.1165ele1h_ss0.00.0ele1h_zz0.1861042.623e2e1h_aa0.015486.3247e2e2h_aa0.015486.3247e2e2h_az0.010458.2972e2e2h_e2e20.001488.29614e2e2h_e2e20.001488.29614e2e2h_gg0.583251.19e2e2h_ss0.00.0e2e2h_ss0.00.0e2e2h_zz0.1791003.3845e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.015486.3247e3e3h_aa0.016482.9614e3e3h_aa0.015486.3247e3e3h_aa0.016482.9614e3e3h_aa0.016482.9614e3e3h_aa0.02 </th <th></th> <th></th> <th></th>			
ele1h.aa 0.0161 90.24855 $ele1h.az$ 0.0108 60.5394 $ele1h.bb$ 4.06 22758.33 $ele1h.cc$ 0.205 1149.1275 $ele1h.e2e2$ 0.00154 8.63247 $ele1h.gg$ 0.603 3380.1165 $ele1h.gg$ 0.603 3380.1165 $ele1h.gg$ 0.603 3380.1165 $ele1h.gg$ 0.603 3380.1165 $ele1h.x$ 0.186 1042.623 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.aa$ 0.0164 88.2972 $e2e2h.ec$ 0.197 1104.2835 $e2e2h.eca$ 0.00148 8.29614 $e2e2h.gg$ 0.58 3251.19 $e2e2h.gg$ 0.58 3251.19 $e2e2h.gg$ 0.58 3251.19 $e2e2h.x$ 0.179 1003.3845 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.ab$ 3.89 21805.395 $e3e3h.ab$ 3.89 21805.395 $e3e3h.ce$ 0.196 1098.678 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.0016 59.4835 <t< th=""><th>Process</th><th>Cross section</th><th>Events expected</th></t<>	Process	Cross section	Events expected
$e le1h_az$ 0.010860.5394 $e le1h_bb$ 4.0622758.33 $e le1h_cc$ 0.2051149.1275 $e le1h_e2e2$ 0.001548.63247 $e le1h_e3e3$ 0.4452494.4475 $e le1h_gg$ 0.6033380.1165 $e le1h_ss$ 0.00.0 $e le1h_x$ 0.1861042.623 $e 2e2h_aa$ 0.015486.3247 $e 2e2h_aa$ 0.015486.3247 $e 2e2h_aa$ 0.010458.2972 $e 2e2h_cc$ 0.1971104.2835 $e 2e2h_ce2$ 0.001488.29614 $e 2e2h_e2e2$ 0.001488.29614 $e 2e2h_e2e3$ 0.4282399.154 $e 2e2h_gg$ 0.583251.19 $e 2e2h_ss$ 0.00.0 $e 2e2h_x$ 0.1791003.3845 $e 3e3h_aa$ 0.015486.3247 $e 3e3h_aa$ 0.01648.29614 $e 3e3h_aa$ 0.01648.29614 $e 3e3h_aa$ 0.017489.329.979 $e 3e3h_aa$ 0.01748.29614 $e 3e3h_aa$ 0.01648.29614 $e 3e3h_aa$ 0.0178897.779 $e 3e3h_aa$ 0.016594.183 $e 3e3h_aa$ 0.01090.68694 $e 3e3h_aa$ 0.016594.183 $e 3e3h_aa$ 0.000.0 $e 3e3h_aa$ 0.016594.183<	e1e1h_aa	0.0161	90.24855
e1e1h.bb 4.06 22758.33 $e1e1h.cc$ 0.205 1149.1275 $e1e1h.c2e2$ 0.00154 8.63247 $e1e1h.gg$ 0.603 3380.1165 $e1e1h.gg$ 0.603 3380.1165 $e1e1h.ss$ 0.0 0.0 $e1e1h.ww$ 1.51 8464.305 $e1e1h.zz$ 0.186 1042.623 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.az$ 0.0104 58.2972 $e2e2h.az$ 0.0104 58.2972 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.ce2e$ 0.00148 8.29614 $e2e2h.gg$ 0.58 3251.19 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0 0.0 $e2e2h.xz$ 0.179 1003.3845 $e3c3h.aa$ 0.0154 86.3247 $e3c3h.aa$ 0.0154 86.3247 $e3c3h.aa$ 0.0154 86.3247 $e3c3h.aa$ 0.0103 57.73665 $e3c3h.cc$ 0.196 1098.678 $e3c3h.cc$ 0.196 1098.678 $e3c3h.gg$ 0.578 3239.979 $e3c3h.ss$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $mh.aa$ 0.106 594.183 $nh.ab$ 26.7 149666.85 $nh.cc$ 1.35 7567.425 $nh.e2e2$ 0.0101 56.61555	e1e1h_az	0.0108	60.5394
$e1e1h.cc$ 0.205 1149.1275 $e1e1h.e2e2$ 0.00154 8.63247 $e1e1h.e3e3$ 0.445 2494.4475 $e1e1h.gg$ 0.603 3380.1165 $e1e1h.ss$ 0.0 0.0 $e1e1h.ww$ 1.51 8464.305 $e1e1h.zz$ 0.186 1042.623 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.aa$ 0.0104 58.2972 $e2e2h.aa$ 0.0104 58.2972 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.ce2e$ 0.00148 8.29614 $e2e2h.gg$ 0.58 3251.19 $e2e2h.gg$ 0.58 3251.19 $e2e2h.ss$ 0.0 0.0 $e2e2h.xz$ 0.179 1003.3845 $e3c3h.aa$ 0.0154 86.3247 $e3c3h.aa$ 0.0154 86.3247 $e3c3h.aa$ 0.0103 57.73665 $e3c3h.aa$ 0.0103 57.73665 $e3c3h.cc$ 0.196 1098.678 $e3c3h.cc$ 0.196 1098.678 $e3c3h.gg$ 0.578 3239.979 $e3c3h.as$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $e3c3h.ss$ 0.0 0.0 $mh.aa$ 0.106 594.183 nh_aa 0.106 594.183 nh_aa 0.106 594.183 nh_aa 0.106 594.183 $nh_$	e1e1h_bb	4.06	22758.33
e1e1h.e2e2 0.00154 8.63247 $e1e1h.e3e3$ 0.445 2494.4475 $e1e1h.e3e3$ 0.603 3380.1165 $e1e1h.ss$ 0.0 0.0 $e1e1h.ss$ 0.0 0.0 $e1e1h.xw$ 1.51 8464.305 $e1e1h.zz$ 0.186 1042.623 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.az$ 0.0104 58.2972 $e2e2h.bb$ 3.91 21917.505 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.ce2e1$ 0.00148 8.29614 $e2e2h.e2e2$ 0.00148 8.29614 $e2e2h.e2e2$ 0.00148 8.29614 $e2e2h.gg$ 0.58 3251.19 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0103 57.73665 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.ec$ 0.196 1098.678 $e3e3h.ec$ 0.196 1098.678 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e2e2$ 0.00 0.0 $e3e3h.e2e2$ 0.00 0.0 $e3e3h.e2a3$ 0.427 2393.5485 $e3e3h.e2a3$ 0.427 2393.5485 $e3e3h.ss$ 0.0 </td <td>e1e1h_cc</td> <td>0.205</td> <td>1149.1275</td>	e1e1h_cc	0.205	1149.1275
$e1e1h_e3e3$ 0.445 2494.4475 $e1e1h_gg$ 0.603 3380.1165 $e1e1h_ss$ 0.0 0.0 $e1e1h_sw$ 1.51 8464.305 $e1e1h_zz$ 0.186 1042.623 $e2e2h_aa$ 0.0154 86.3247 $e2e2h_bb$ 3.91 21917.505 $e2e2h_cc$ 0.197 1104.2835 $e2e2h_c2e2$ 0.00148 8.29614 $e2e2h_e2e2$ 0.00148 8.29614 $e2e2h_e2e3$ 0.428 2399.154 $e2e2h_gg$ 0.58 3251.19 $e2e2h_ss$ 0.0 0.0 $e2e2h_xz$ 0.179 1003.3845 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_aa$ 0.0103 57.73665 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e2e3$ 0.427 2393.5485 $e3e3h_e2e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 <td< td=""><td>e1e1h_e2e2</td><td>0.00154</td><td>8.63247</td></td<>	e1e1h_e2e2	0.00154	8.63247
e1e1h.gg 0.603 3380.1165 $e1e1h.ss$ 0.0 0.0 $e1e1h.ww$ 1.51 8464.305 $e1e1h.zz$ 0.186 1042.623 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.az$ 0.0104 58.2972 $e2e2h.bb$ 3.91 21917.505 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.ce22$ 0.00148 8.29614 $e2e2h.gg$ 0.58 3251.19 $e2e2h.gg$ 0.58 3251.19 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0 0.0 $e2e2h.zz$ 0.179 1003.3845 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.gg$ 0.578 3239.979 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $mh.aa$ 0.106 594.183 $nh.ab$ 26.7 149666.85 $nh.cc$ 1.35 7567.425 $nh.e3e3$ 2.93 16424.115 $nh.gg$ 3.97 22253.835	e1e1h_e3e3	0.445	2494.4475
e1e1h.ss 0.0 0.0 $e1e1h.zz$ 0.186 1042.623 $e2e2h.aa$ 0.0154 86.3247 $e2e2h.aa$ 0.0104 58.2972 $e2e2h.bb$ 3.91 21917.505 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.ce22$ 0.00148 8.29614 $e2e2h.gg$ 0.58 3251.19 $e2e2h.gg$ 0.58 3251.19 $e2e2h.gg$ 0.58 3251.19 $e2e2h.ss$ 0.0 0.0 $e2e2h.zz$ 0.179 1003.3845 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.gg$ 0.578 3239.979 $e3e3h.gg$ 0.578 3239.979 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $nh.aa$ 0.106 594.183 $nh.aa$ 0.106 594.183 $nh.aa$ 0.0708 396.8694 $nh.bb$ 26.7 149666.85 $nh.cc$ 1.35 7567.4255 $nh.e3e3$ 2.93 16424.115 $nh.gg$ 3.97 22253.835 $nh.ss$ 0.0 0.0 $nh.$	e1e1h_gg	0.603	3380.1165
$e1e1h_xw$ 1.51 8464.305 $e1e1h_zz$ 0.186 1042.623 $e2e2h_aa$ 0.0154 86.3247 $e2e2h_az$ 0.0104 58.2972 $e2e2h_bb$ 3.91 21917.505 $e2e2h_cc$ 0.197 1104.2835 $e2e2h_e2e2$ 0.00148 8.29614 $e2e2h_e3e3$ 0.428 2399.154 $e2e2h_e3e3$ 0.428 2399.154 $e2e2h_gg$ 0.58 3251.19 $e2e2h_ss$ 0.0 0.0 $e2e2h_xz$ 0.179 1003.3845 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_aa$ 0.0103 57.73665 $e3e3h_aa$ 0.0103 57.73665 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.016 594.183 nh_a 0.106 594.183 nh_a 0.106 594.183 nh_a 0.106 594.183 nh_e2e2 0.0101 56.61555 <	e1e1h_ss	0.0	0.0
$e1e1h_zz$ 0.1861042.623 $e2e2h_aa$ 0.015486.3247 $e2e2h_az$ 0.010458.2972 $e2e2h_bb$ 3.9121917.505 $e2e2h_cc$ 0.1971104.2835 $e2e2h_e2e2$ 0.001488.29614 $e2e2h_e3e3$ 0.4282399.154 $e2e2h_gg$ 0.583251.19 $e2e2h_ss$ 0.00.0 $e2e2h_zz$ 0.1791003.3845 $e3e3h_aa$ 0.015486.3247 $e3e3h_aa$ 0.010357.73665 $e3e3h_bb$ 3.8921805.395 $e3e3h_c2e2$ 0.001488.29614 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_ss$ 0.00.0 $e3e3h_ss$ 0.00.0 $e3e3h_ss$ 0.00.0 $e3e3h_ss$ 0.106594.183 nnh_aa 0.106594.183 nnh_aa 0.106594.183 nnh_e2e2 0.010156.61555 nnh_e3e3 2.9316424.115 nnh_ss 0.00.0 nnh_w 9.9555774.725 nnh_ss 0.00.0 nnh_w 9.9555774.725 nnh_e2e2 0.038168.165 qqh_aa 0.3121748.916 qqh_aa 0.3121748.916 qqh_e2e2 0.038168.165 qqh_e3e3 8.6548487.575 qqh_e2	e1e1h_ww	1.51	8464.305
$e2e2h_aa$ 0.0154 86.3247 $e2e2h_az$ 0.0104 58.2972 $e2e2h_bb$ 3.91 21917.505 $e2e2h_cc$ 0.197 1104.2835 $e2e2h_e2e2$ 0.00148 8.29614 $e2e2h_e3e3$ 0.428 2399.154 $e2e2h_e3e3$ 0.00 0.0 $e2e2h_x$ 0.179 1003.3845 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_aa$ 0.0103 57.73665 $e3e3h_aa$ 0.0103 57.73665 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.0 0.0 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.0708 396.8694 nh_aa 0.106 594.183 nh_aa 0.106 594.183 nh_e2e2 0.0101 56.61555 nh_e3e3 2.93 16424.115 <tr< td=""><td>e1e1h_zz</td><td>0.186</td><td>1042.623</td></tr<>	e1e1h_zz	0.186	1042.623
e2e2h.az0.010458.2972 $e2e2h.bb$ 3.9121917.505 $e2e2h.cc$ 0.1971104.2835 $e2e2h.e2e2$ 0.001488.29614 $e2e2h.e3e3$ 0.4282399.154 $e2e2h.gg$ 0.583251.19 $e2e2h.gg$ 0.583251.19 $e2e2h.ss$ 0.00.0 $e2e2h.ss$ 0.00.0 $e2e2h.ss$ 0.1791003.3845 $e3e3h.aa$ 0.015486.3247 $e3e3h.aa$ 0.010357.73665 $e3e3h.bb$ 3.8921805.395 $e3e3h.cc$ 0.1961098.678 $e3e3h.e2e2$ 0.001488.29614 $e3e3h.e2e2$ 0.001488.29614 $e3e3h.e3e3$ 0.4272393.5485 $e3e3h.gg$ 0.5783239.979 $e3e3h.ss$ 0.00.0 $e3e3h.ss$ 0.00.0 $e3e3h.ss$ 0.00.0 $e3e3h.ss$ 0.00.0 $e3e3h.ss$ 0.00.0 $e3e3h.ss$ 0.00.0 $nh.aa$ 0.106594.183 $nh.bb$ 26.7149666.85 $nh.cc$ 1.357567.425 $nh.e2e3$ 2.9316424.115 $nh.gg$ 3.9722253.835 $nh.ss$ 0.00.0 $nh.ss$ 0.00.0 $nh.ss$ 0.00.0 $nh.ss$ 0.2091171.5495 $qqh.aa$ 0.3121748.916 $qqh.aa$ 0.3121748.916 $qqh.e2e2$ 0.038168.165	e2e2h_aa	0.0154	86.3247
e2e2h.bb 3.91 21917.505 $e2e2h.cc$ 0.197 1104.2835 $e2e2h.e2e2$ 0.00148 8.29614 $e2e2h.e3e3$ 0.428 2399.154 $e2e2h.e3e3$ 0.428 2399.154 $e2e2h.e3e3$ 0.428 2399.154 $e2e2h.gg$ 0.58 3251.19 $e2e2h.ss$ 0.0 0.0 $e2e2h.ss$ 0.0 0.0 $e2e2h.zz$ 0.179 1003.3845 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.aa$ 0.0103 57.73665 $e3e3h.az$ 0.0103 57.73665 $e3e3h.bb$ 3.89 21805.395 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $e3e3h.ss$ 0.0 0.0 $nh.aa$ 0.106 594.183 $nh.ab$ 26.7 149666.85 $nh.cc$ 1.35 7567.425 $nh.e2e2$ 0.0101 56.61555 $nh.e3e3$ 2.93 16424.115 $nh.gg$ 3.97 22253.835 $nh.ss$ 0.0 0.0 $nh.ss$ 0.0 0.0 $nh.e3e3$ 2.93 16424.115 <td< td=""><td>e2e2h_az</td><td>0.0104</td><td>58.2972</td></td<>	e2e2h_az	0.0104	58.2972
$e2e2h_e2e$ 0.001488.29614 $e2e2h_e2e2$ 0.001488.29614 $e2e2h_e3e3$ 0.4282399.154 $e2e2h_gg$ 0.583251.19 $e2e2h_gg$ 0.583251.19 $e2e2h_xs$ 0.00.0 $e2e2h_xs$ 0.1791003.3845 $e3e3h_aa$ 0.015486.3247 $e3e3h_az$ 0.010357.73665 $e3e3h_az$ 0.010357.73665 $e3e3h_az$ 0.010357.73665 $e3e3h_az$ 0.010357.73665 $e3e3h_az$ 0.01961098.678 $e3e3h_e2e2$ 0.001488.29614 $e3e3h_e3a$ 0.4272393.5485 $e3e3h_e3a$ 0.4272393.5485 $e3e3h_e3a$ 0.4272393.5485 $e3e3h_e3a$ 0.4272393.5485 $e3e3h_e3a$ 0.4272393.5485 $e3e3h_ax$ 0.178997.779 nnh_aa 0.106594.183 nnh_aa 0.106594.183 nnh_aa 0.106594.183 nnh_aa 0.000.0 nnh_ab 26.7149666.85 nnh_aca 0.000.0 nnh_ab 26.7149666.85 nnh_ac3 2.9316424.115 <td>e2e2h_bb</td> <td>3.91</td> <td>21917.505</td>	e2e2h_bb	3.91	21917.505
$e2e2h_e2e2$ 0.00148 8.29614 $e2e2h_e3e3$ 0.428 2399.154 $e2e2h_gg$ 0.58 3251.19 $e2e2h_ss$ 0.0 0.0 $e2e2h_ss$ 0.0 0.0 $e2e2h_zz$ 0.179 1003.3845 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_aa$ 0.0103 57.73665 $e3e3h_az$ 0.0103 57.73665 $e3e3h_ac$ 0.196 1098.678 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_s$ 0.0 0.0 $e3e3h_s$ 0.0 0.0 $e3e3h_s$ 0.0 0.0 $e3e3h_s$ 0.0 0.0 nh_a 0.106 594.183 nnh_a 0.106 594.183 nnh_a 0.106 594.183 nnh_s 0.0 0.0 nnh_s 0.00 0.0 nnh_s 0.03^8 168.165 <t< td=""><td>e2e2h_cc</td><td>0.197</td><td>1104.2835</td></t<>	e2e2h_cc	0.197	1104.2835
$e2e2h_e3e3$ 0.428 2399.154 $e2e2h_gg$ 0.58 3251.19 $e2e2h_ss$ 0.0 0.0 $e2e2h_ww$ 1.46 8184.03 $e2e2h_zz$ 0.179 1003.3845 $e3e3h_aa$ 0.0154 86.3247 $e3e3h_az$ 0.0103 57.73665 $e3e3h_c2e2$ 0.00148 8.29614 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_ag$ 0.578 3239.979 $e3e3h_ss$ 0.0 0.0 $e3e3h_ss$ 0.0 0.0 $e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_az 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3g 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_ss 2.209 1171.5495 qqh_e3e3 8.65 48487.575	e2e2h_e2e2	0.00148	8.29614
$e2e2h_gg$ 0.583251.19 $e2e2h_ss$ 0.00.0 $e2e2h_xw$ 1.468184.03 $e2e2h_xz$ 0.1791003.3845 $e3e3h_aa$ 0.015486.3247 $e3e3h_az$ 0.010357.73665 $e3e3h_az$ 0.010357.73665 $e3e3h_az$ 0.010480.395 $e3e3h_c2e2$ 0.001488.29614 $e3e3h_e2e2$ 0.001488.29614 $e3e3h_e2e2$ 0.001488.29614 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_gg$ 0.5783239.979 $e3e3h_gg$ 0.5783239.979 $e3e3h_gg$ 0.5783239.979 $e3e3h_gg$ 0.5783239.979 $e3e3h_gg$ 0.5783239.979 $e3e3h_gg$ 0.578393.977 $e3e3h_zz$ 0.178997.779 nnh_aa 0.106594.183 nnh_aa 0.106594.183 nnh_aa 0.0708396.8694 nnh_bb 26.7149666.85 nnh_cc 1.357567.425 nnh_c2a 0.2010156.61555 nnh_c3e3 2.9316424.115 nnh_gg 3.9722253.835 nnh_ss 0.00.0 nnh_xx 1.226838.71 qqh_aa 0.3121748.916 qqh_aa 0.3121748.916 qqh_aa 0.3121748.916 qqh_aa 0.3121748.916 qqh_aa 0.39822309.89 qqh_cc 3.9822309.89 q	e2e2h_e3e3	0.428	2399.154
$e2e2h.ss$ 0.0 0.0 $e2e2h.ww$ 1.46 8184.03 $e2e2h.zz$ 0.179 1003.3845 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.az$ 0.0103 57.73665 $e3e3h.bb$ 3.89 21805.395 $e3e3h.cc$ 0.196 1098.678 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.gg$ 0.578 3239.979 $e3e3h.ss$ 0.0 0.0 $e3e3h.ww$ 1.45 8127.975 $e3e3h.zz$ 0.178 997.779 $nnh.aa$ 0.106 594.183 $nnh.aa$ 0.0708 396.8694 $nnh.ab$ 26.7 149666.85 $nnh.cc$ 1.35 7567.425 $nnh.e2e2$ 0.0101 56.61555 $nnh.e3e3$ 2.93 16424.115 $nnh.gg$ 3.97 22253.835 $nnh.ss$ 0.0 0.0 $nnh.mw$ 9.95 55774.725 $nnh.ss$ 0.0 0.0 nnh_aa 0.312 1748.916 $qqh.aa$ 0.312 1748.916 $qqh.aa$ 0.209 1171.5495 $qqh.e2e2$ 0.0^8 168.165 $qqh.e2e2$ 0.0^8 168.165 $qqh.e2e2$ 0.0^8 168.165 $qqh.e3a$ 8.65 48487.575 $qqh.e3a$ 8.65 48487.575 <t< td=""><td>e2e2h_gg</td><td>0.58</td><td>3251.19</td></t<>	e2e2h_gg	0.58	3251.19
$e2e2h_xx$ 1.468184.03 $e2e2h_zz$ 0.1791003.3845 $e3e3h_aa$ 0.015486.3247 $e3e3h_az$ 0.010357.73665 $e3e3h_bb$ 3.8921805.395 $e3e3h_cc$ 0.1961098.678 $e3e3h_c2e2$ 0.001488.29614 $e3e3h_e2e2$ 0.001488.29614 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_e3e3$ 0.4272393.5485 $e3e3h_gg$ 0.5783239.979 $e3e3h_gg$ 0.5783239.979 $e3e3h_xz$ 0.178997.779 nh_aa 0.106594.183 nnh_aa 0.106594.183 nnh_aa 0.0708396.8694 nnh_bb 26.7149666.85 nnh_cc 1.357567.425 nnh_e2e2 0.010156.61555 nnh_gg 3.9722253.835 nnh_gg 3.9722253.835 nnh_ss 0.00.0 nnh_ww 9.9555774.725 nnh_xz 1.226838.71 qqh_aa 0.3121748.916 qqh_aa 0.2091171.5495 qqh_bb 78.9442273.95 qqh_c2e2 0.03168.165 qqh_e3a 8.6548487.575 qqh_gg 11.765584.35 qqh_ss 0.00.0 qqh_ss 0.00.0 qqh_ss 0.00.0 qqh_ss 0.00.0	e2e2h_ss	0.0	0.0
e2e2h.zz0.1791003.3845 $e3e3h.aa$ 0.0154 86.3247 $e3e3h.az$ 0.0103 57.73665 $e3e3h.bb$ 3.89 21805.395 $e3e3h.cc$ 0.1961098.678 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.4272393.5485 $e3e3h.e3e3$ 0.4272393.5485 $e3e3h.e3e3$ 0.4272393.5485 $e3e3h.e3e3$ 0.4272393.5485 $e3e3h.gg$ 0.5783239.979 $e3e3h.ss$ 0.00.0 $e3e3h.xz$ 0.178997.779 $nh.aa$ 0.106594.183 $nnh.aa$ 0.106594.183 $nnh.aa$ 0.0708396.8694 $nnh.bb$ 26.7149666.85 $nnh.cc$ 1.357567.425 $nnh.e2e2$ 0.010156.61555 $nnh.e3e3$ 2.9316424.115 $nnh.gg$ 3.9722253.835 $nnh.ss$ 0.00.0 $nnh.mw$ 9.9555774.725 $nnh.zz$ 1.226838.71 $qqh.aa$ 0.3121748.916 $qqh.ab$ 78.9442273.95 $qqh.ab$ 78.9442273.95 $qqh.cc$ 3.9822309.89 $qqh.cc$ 3.9822309.89 $qqh.e2e2$ 0.03168.165 $qqh.e3e3$ 8.6548487.575 $qqh.ss$ 0.00.0 $qqh.ss$ 0.00.0 $qqh.ss$ 0.00.0 $qqh.ss$ 0.00.0 $qqh.ss$ 0.0<	e2e2h_ww	1.46	8184.03
e $3e3h.aa$ 0.015486.3247e $3e3h.az$ 0.010357.73665e $3e3h.bb$ 3.8921805.395e $3e3h.cc$ 0.1961098.678e $3e3h.e2e2$ 0.001488.29614e $3e3h.e3e3$ 0.4272393.5485e $3e3h.e3e3$ 0.4272393.5485e $3e3h.e3e3$ 0.4272393.5485e $3e3h.e3e3$ 0.4272393.5485e $3e3h.e3e3$ 0.4272393.5485e $3e3h.e3e3$ 0.00.0e $3e3h.ss$ 0.00.0e $3e3h.ss$ 0.00.0e $3e3h.xz$ 0.178997.779nnh.aa0.106594.183nnh.az0.0708396.8694nnh.bb26.7149666.85nnh.cc1.357567.425nnh.e2e20.010156.61555nnh.e3e32.9316424.115nnh.gg3.9722253.835nnh.ss0.00.0nnh.ss0.00.0nnh.ww9.9555774.725nnh.zz1.226838.71qqh.aa0.3121748.916qqh.aa0.3121748.916qqh.aa0.2091171.5495qqh.bb78.9442273.95qqh.cc3.9822309.89qqh.e2e20.038168.165qqh.e3e38.6548487.575qqh.gg11.765584.35qqh.ss0.00.0qqh.ss0.00.0qqh.zz3.6120235.855	e2e2h_zz	0.179	1003.3845
$e3e3h_az$ 0.0103 57.73665 $e3e3h_bb$ 3.89 21805.395 $e3e3h_cc$ 0.196 1098.678 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_as$ 0.0 0.0 $e3e3h_xs$ 0.0 0.0 $e3e3h_xz$ 0.178 997.779 nh_aa 0.106 594.183 nnh_aa 0.106 594.183 nnh_aa 0.0708 396.8694 nnh_aa 0.0708 396.8694 nnh_bb 26.7 149666.855 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_xw 9.95 55774.725 nnh_xz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_aa 0.312 1748.916 qqh_ab 78.9 442273.95 qqh_ac 0.08^8 22309.89 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 <td>e3e3h_aa</td> <td>0.0154</td> <td>86.3247</td>	e3e3h_aa	0.0154	86.3247
$e3e3h.bb$ 3.89 21805.395 $e3e3h.cc$ 0.196 1098.678 $e3e3h.e2e2$ 0.00148 8.29614 $e3e3h.e3e3$ 0.427 2393.5485 $e3e3h.gg$ 0.578 3239.979 $e3e3h.gg$ 0.578 3239.979 $e3e3h.ss$ 0.0 0.0 $e3e3h.ww$ 1.45 8127.975 $e3e3h.xz$ 0.178 997.779 $nh.aa$ 0.106 594.183 $nh.az$ 0.0708 396.8694 $nh.bb$ 26.7 149666.85 $nh.cc$ 1.35 7567.425 $nh.e2e2$ 0.0101 56.61555 $nh.e3e3$ 2.93 16424.115 $nh.gg$ 3.97 22253.835 $nh.ss$ 0.0 0.0 $nnh.mw$ 9.95 55774.725 $nh.xz$ 1.22 6838.71 $qqh.aa$ 0.312 1748.916 $qqh.ab$ 78.9 442273.95 $qqh.bb$ 78.9 42273.95 $qqh.cc$ 3.98 22309.89 $qqh.e2e2$ 0.03^8 168.165 $qqh.gg$ 11.7 65584.35 $qqh.gg$ 11.7 65584.35 $qqh.ss$ 0.0 0.0 $qqh.gg$ 11.7 65584.35 $qqh.gg$ 10.7 $qqh.gg$ 11.7 65584.35 $qqh.gg$ 10.7 $qdp.gg$ 10.7 $qdp.gg$ 10.7 $qdp.gg$ 10.7 $qdp.gg$ 10.7 $qdp.gg$ 0.0 </td <td>e3e3h_az</td> <td>0.0103</td> <td>57.73665</td>	e3e3h_az	0.0103	57.73665
$e3e3h_cc$ 0.196 1098.678 $e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_gg$ 0.578 3239.979 $e3e3h_gg$ 0.578 3239.979 $e3e3h_gg$ 0.578 3239.979 $e3e3h_gg$ 0.578 3239.979 $e3e3h_xs$ 0.0 0.0 $e3e3h_xs$ 0.0 0.0 $e3e3h_xz$ 0.178 997.779 nh_aa 0.106 594.183 nnh_aa 0.106 594.183 nnh_aa 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_gg 3.97 22253.835 nnh_xs 0.0 0.0 nnh_xx 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_aa 0.209 1171.5495 qqh_bb 78.9 42273.95 qqh_bb 78.9 42273.95 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0	e3e3h_bb	3.89	21805.395
$e3e3h_e2e2$ 0.00148 8.29614 $e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_gg$ 0.578 3239.979 $e3e3h_ss$ 0.0 0.0 $e3e3h_ss$ 0.0 0.0 $e3e3h_xw$ 1.45 8127.975 $e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_aa 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_xw 9.95 55774.725 nnh_xz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_aa 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0	e3e3h_cc	0.196	1098.678
$e3e3h_e3e3$ 0.427 2393.5485 $e3e3h_gg$ 0.578 3239.979 $e3e3h_ss$ 0.0 0.0 $e3e3h_ww$ 1.45 8127.975 $e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_az 0.0708 396.8694 nnh_az 0.0708 396.8694 nnh_cc 1.35 7567.425 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_aa 0.312 1748.916 qqh_e2e2 0.03^8 168.165 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0	e3e3h_e2e2	0.00148	8.29614
$e3e3h_gg$ 0.578 3239.979 $e3e3h_ss$ 0.0 0.0 $e3e3h_ww$ 1.45 8127.975 $e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_aa 0.0708 396.8694 nnh_az 0.0708 396.8694 nnh_e2 0.0101 56.61555 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_aa 0.312 1748.916 qqh_aa 0.312 1748.916 qqh_aa 0.209 1171.5495 qqh_ac 0.08^8 22309.89 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0	e3e3h_e3e3	0.427	2393.5485
$e3e3h_ss$ 0.0 0.0 $e3e3h_ww$ 1.45 8127.975 $e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_aa 0.0708 396.8694 nnh_az 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_xw 9.95 55774.725 nnh_xz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_aa 0.312 1748.916 qqh_aa 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_xz 3.61 20235.855	e3e3h_gg	0.578	3239.979
$e3e3h_ww$ 1.45 8127.975 $e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_az 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_xw 9.95 55774.725 nnh_xz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_aa 0.312 1748.916 qqh_aa 0.209 1171.5495 qqh_ac 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_xz 3.61 20235.855	e3e3h_ss	0.0	0.0
$e3e3h_zz$ 0.178 997.779 nnh_aa 0.106 594.183 nnh_az 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ss 0.0 0.0 nnh_xw 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_cc 3.98 22309.89 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0	e3e3h_ww	1.45	8127.975
nnh_aa 0.106 594.183 nnh_az 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_c2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_xw 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	e3e3h_zz	0.178	997.779
nnh_az 0.0708 396.8694 nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_c2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_aa	0.106	594.183
nnh_bb 26.7 149666.85 nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_az	0.0708	396.8694
nnh_cc 1.35 7567.425 nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_ss 0.0 0.0 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_bb	26.7	149666.85
nnh_e2e2 0.0101 56.61555 nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_cc	1.35	7567.425
nnh_e3e3 2.93 16424.115 nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_e2e2	0.0101	56.61555
nnh_gg 3.97 22253.835 nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_e3e3	2.93	16424.115
nnh_ss 0.0 0.0 nnh_ww 9.95 55774.725 nnh_zz 1.22 6838.71 qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_cc 3.98 22309.89 qqh_e2e2 0.03 ⁸ 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_zz 3.61 20235.855	nnh_gg	3.97	22253.835
nnh_ww9.9555774.725nnh_zz1.226838.71qqh_aa0.3121748.916qqh_az0.2091171.5495qqh_bb78.9442273.95qqh_cc3.9822309.89qqh_e2e20.03 ⁸ 168.165qqh_e3e38.6548487.575qqh_gg11.765584.35qqh_ss0.00.0qqh_ww29.4164801.7qqh_zz3.6120235.855	nnh_ss	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nnh_ww	9.95	55774.725
qqh_aa 0.312 1748.916 qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	nnh_zz	1.22	6838.71
qqh_az 0.209 1171.5495 qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03 ⁸ 168.165 qqh_e3e3 8.65 48487.575 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	qqh_aa	0.312	1748.916
qqh_bb 78.9 442273.95 qqh_cc 3.98 22309.89 qqh_e2e2 0.03^8 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	qqh_az	0.209	1171.5495
qqh_cc 3.98 22309.89 qqh_e2e2 0.03 ⁸ 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	qqh_bb	78.9	442273.95
qqh_e2e2 0.03 ⁸ 168.165 qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	qqh_cc	3.98	22309.89
qqh_e3e3 8.65 48487.575 qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	qqh_e2e2	0.038	168.165
qqh_gg 11.7 65584.35 qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	qqh_e3e3	8.65	48487.575
qqh_ss 0.0 0.0 qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	aah_gg	11.7	65584.35
qqh_ww 29.4 164801.7 qqh_zz 3.61 20235.855	agh_ss	0.0	0.0
qqh_zz 3.61 20235.855	qah_ww	29.4	164801.7
	qqh_zz	3.61	20235.855

Table 2: ZH sample list

150 2.2 Two fermions background Samples

Process	Cross section	Events expected
qq	54106.86	303296003.73
e2e2	5332.71	29892506.46
e3e3	4752.89	26642325.45
e1e1	24770.9	138853279.95
n1n1	45390.79	254438073.9
n2n2	4416.3	24755569.65
n3n3	4410.26	24721712.43

Table 3: General information about two fermions background samples

2.3 Four fermions background Samples

Process	Cross section	Events expected
zz_h0utut	85.68	480279.24
zz_h0dtdt	233.46	1308660.03
zz_h0uu_notd	98.56	552478.08
zz_h0cc_nots	98.97	554776.89
zz_sl0nu_up	84.38	472992.09
zz_sl0nu_down	139.71	783144.96
zz_sl0mu_up	87.39	489865.2
zz_sl0mu_down	136.14	763132.77
zz_sl0tau_up	41.56	232964.58
zz_sl0tau_down	67.31	377306.76
zz_104tau	4.61	25841.91
zz_104mu	15.56	87221.58
zz_10taumu	18.56	104038.08
zz_10mumu	19.38	108634.59
zz_10tautau	9.61	53869.41
ww_h0cuxx	3478.89	19500918.45
ww_h0uubd	0.05	280.83
ww_h0uusd	170.45	955458.03
ww_h0ccbs	5.89	33016.95
ww_h0ccds	170.18	953943.99
ww_s10muq	2423.43	13584537.42
ww_sl0tauq	2423.56	13585265.58
ww_1011	403.66	2262716.13
zzorww_h0udud	1610.32	9026648.76
zzorww_h0cscs	1607.55	9011122.08
zzorww_10mumu	221.1	1239376.05
zzorww_10tautau	211.18	1183769.49
sze_10tau	147.28	825578.04
sze_10mu	845.81	4741188.51
sze_10nunu	28.94	162223.17
sze_sl0uu	190.21	1066222.71
sze_sl0dd	125.83	705340.62
sznu_10mumu	43.42	243390.81
sznu_10tautau	14.57	81672.69
sznu_sl0nu_up	55.59	311610.3
sznu_sl0nu_down	90.03	504663.72
sw_10mu	436.7	2447921.85
sw_10tau	435.93	2443606.17
sw_sl0qq	2612.62	14645041.41
szeorsw_101	249.48	1398460.14

Table 4: General information about four fermions background samples

152 3 Analysis Procedure

We give here a brief explanation about the analysis framework which is common to all of indivisual channels. The Marlin framework is used for this flow.

The analysis starts from the reconstructed objects as inputs. The lepton isolation processor, the jet clustering processor are applied on the Arbor PFO to separate leptons from the rest. The remain objects are going to be clustered into number of jets by the the jet clustering processor, where we can designate the jet algorithm to be used, the number of (exclusive) jets and so on. Classified objects are feed into a processor which we call it internally as "Higgs2zz" processor and pre selection on events are performed. Fig. 1 is the skematic of the analysis flow chart, and further details are given in the following items.

Analysis flow chart

Figure 1: Analysis Flow Chart

161 Lepton Isolation

The leptons, here they are electrons and muons, like the decay particles of the initial Z boson, should not be merged into jets, and the task is done by this lepton isoloation processor. The isolated status is judged from several condistions, such as particles having "cone energy" which is lower than certain thredhold, as well as requiring its PID as that of electrons or muons. The input collection to the processor is the Arbor PFO, and it has two output collections, one includes only isolated leptons, the other includes the rest.

168 Jet Clustering

FastJet processor has been chosen for the jet clustering process. We have used so-called "eekt" algorithm. The input collection is the one which does not include isolated leptons, and that is clustered into two jets exclusively, by setting the number of jets option as two. The output collection of this processor has information of these two jets.

173 Event Preselection

The "Higgs2zz" processor has role of the event preselection. The input collections consists of output of the lepton isolation processor for the isolated leptons, output of the fastjet processor for the jets, the Arbor PFO collection and the MCParticle collection for MC truth information. If event contains one positive charged lepton and one minus charged lepton in the isolated lepton collection, and the two jets from the fastjet processor, this event is saved. Several meaningful information, such as di lepton mass and momentum, are obtained at this stage and as well.

180 BDT Selection

- After several common selections ($M_{Higgscandidate}$, $M_{Higgscandidate}^{recoil}$, N(pfo) and $cos \theta_{visible}$), the size of signal and background samples is suppressed to appropriate size to be the input files of BDT study. The cut values are mainly determined by the cut-based study.
- The python method scikit-learn is used here instead of TMVA for BDT study. Some details about the BDT could be found in Table 5. In the case of number of signal events much less than the background events, to get better BDT performance, imbalanced learn method is applied.
- ¹⁸⁷ When the BDT training is finished, the output BDT model could be used to calculate a BDT score ¹⁸⁸ for each event with the input variable list. Once the distribution of this BDT score is available, we ¹⁸⁹ could apply a cut on the BDT score (default value is 0.00). To determine which value is the best, ¹⁹⁰ the $\frac{S}{\sqrt{S+B}}$ versus cut value curve will be shown for each channel.
- Typical distribusions after this pre selection process on $\mu\mu$ HZZ signal sample are shown in Fig. 2-3. Corresponding description about the histograms should be given briefly here.

Setting	Value
Type of classifier	AdaBoost
Algorithm	SAMME
Number of estimators	800
Learning rate	0.5
Test/Train sample size ratio	1
Max depth	1
Min samples leaf	10
Min samples split	20

Table 5: Some settings and parameters of Boosted Decision Tree (BDT).

Figure 2: Distributions of the invariant mass and the recoil mass of di-muons. The figures shall be updated. .

Figure 3: Visible (but except the di-muons) mass distribution. Or, di-jet invariant mass distribution.. The figures shall be updated. .

¹⁹³ **4** Event Selection of $Z(\rightarrow \mu\mu)H(ZZ^*\rightarrow \nu\nu qq)$

¹⁹⁴ **4.1** $\mathbf{Z}(\rightarrow \mu^+\mu^-), \mathbf{H}(\mathbf{Z}\rightarrow\nu\bar{\nu}, \mathbf{Z}^*\rightarrow q\bar{q})$

195 4.1.1 Event selection (Cut-based only)

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	1000.88±31.64	1140511±1067	801811977±28316	107203890±10353	
Pre – selection	616.68±24.83	30494 ± 174	480828±693	515448±717	
S ignal or not	211.44±14.54	30282 ± 174	480828±693	515448±717	
$M_{missing} > M_{dijet}$	107.97±10.39	1608 ± 40	115062±339	28809 ± 169	0.283
N(pfo)	104.16±10.21	908 ± 30	33480 ± 182	14159 ± 118	0.4722
M _{dimuon}	92.43 ±9.61	296 ± 17	24151 ± 155	1625 ± 40	0.5714
M_{dijet}	87.58 ±9.36	280 ± 16	851 ± 29	819 ± 28	1.9395
$M_{missing}$	71.98 ±8.48	124 ± 11	97 ±9	101 ± 10	3.6196
$*cos \theta$	71.98 ±8.48	124 ± 11	97 ±9	101 ± 10	3.6196
$cos \theta_{visible}$	68.7 ±8.29	118 ± 10	22 ± 4	39 ± 6	4.349
$Angle_{\mu j}$	62.43 ±7.9	95 ±9	14 ± 3	20 ± 4	4.4919
M^{rec}_{dimuon}	61.2 ± 7.82	79 ± 8	14 ± 3	8 ± 2	4.7795
M_{dijet}^{rec}	59.24 ± 7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*M_{visible}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*P_{visible}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*P_{T_{visible}}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*E_{leading jet}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*P_{T_{leading jet}}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*E_{sub-leading jet}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
$*P_{T_{sub-leading jet}}$	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
not qqHZZ	59.24 ±7.7	69 ± 8	0 ± 0	4 ± 2	5.1374
not vvHZZ	50.14 ±7.08	36 ±6	0 ±0	4 ±2	5.2503 ± 0.5793

Table 6: Cut flow table for $\mu\mu\nu\nu qq$ channel

- ¹⁹⁶ The event selection cuts are listed below in sequence.
- $M_{miss} > M_{dijets}$: the missing mass is greater than the dijet invariant mass.
- $20 < N_{pfo} < 90$: Number of Prticle Flow Objects should be in this range.
- $80GeV < M_{\mu^+\mu^-} < 100GeV$: the invariant mass of the dimuon should be in this range.

• $15GeV < M_{dijet} < 60GeV$: the invariant mass of dijet should be in this range.

name	scale	final
e2e2h_e3e3	0.023968	2
e2e2h_ww	0.08176	22
nnh_zz	0.06832	10
zz_sl0mu_down	1.08025726079	1
zz_sl0tau_up	1.10880522921	1
zz_10taumu	1.0404004004	2

Table 7: Remained backgrounds (more than 1 event) after all of cuts applied.

Table 8: Remained backgrounds (more than 1 event) before final two cuts applied.

name	scale	final
e2e2h_e3e3	0.023968	2
e2e2h_ww	0.08176	24
nnh_zz	0.06832	41
zz_sl0mu_down	1.08025726079	1
zz_sl0tau_up	1.10880522921	1
zz_10taumu	1.0404004004	2

2D_dijet_missing_raw

Figure 4: Missing mass vs dijet invariant mass.

Figure 5: Number of PFOs.

Figure 6: Invariant mass of di-muons.

Figure 7: Invariant mass of di-jets.

Figure 8: Recoil mass of visible particles.

• $75GeV < M_{visible}^{Recoil} < 105GeV$: the recoil mass of all visible particles should be in this range.

Figure 9: All visible particle $\cos \theta$

• $-0.95 < \cos \theta_{visible} < 0.95 : \cos \theta$ of the summation of all visible particles should be in this range.

• $60 < Min \ angle < 170^{\circ}$: Minimum angle between the two Z(Z*) reconstructed by leptons and jets should be within this range .

•
$$110GeV < M_{Recoil}^{dimuon} < 140GeV$$
: the recoil mass of the dimuon should be in this range.

•
$$185GeV < M_{Recoil}^{dijet} < 220GeV$$
: the recoil mass of the dijet should be in this range.

207 Two additional cuts:

•
$$M_{dijet}^{rec} < 122 GeV \text{ or } M_{dijet}^{rec} > 128 GeV$$
: To avoid the overlap events with qq HZZ signals.

•
$$M_{visible} < 122 GeV \text{ or } M_{visible} > 128 GeV$$
: To remove the overlap events with vv HZZ signals.

Figure 10: Minimum angle between the two $Z(Z^*)$ reconstructed by leptons and jets.

Figure 11: Recoil mass of di-muons.

Figure 12: Recoil mass of di-jets.

Figure 13: Distribution of the recoil mass of dimuon, after all of cuts applied.

210 4.1.2 Event selection combined with BDT method

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	1000	1140511	801811977	107203890	·
Pre – selection	616	30494	480828	515424	
Signal or not	211	30282	480828	515424	
$M_{missing} > M_{dijet}$	107	1608	115062	28811	0.2830
N(pfo)	104	908	33480	14161	0.4722
M_{dimuon}	92	296	24151	1629	0.5714
M^{rec}_{dimuon}	89	256	1642	406	1.8279
$\cos \theta_{visible}$	85	240	388	127	2.9422
BDT score	45	6	0	2	6.1727

Table 9: Cut flow table for $\mu\mu\nu\nu qq$ channel with BDT

• $M_{missing} > M_{dijet}$: the missing mass is greater than the dijet invariant mass.

• $20 < N_{pfo} < 90$: Number of PFO is greater than 20 and less than 90.

- $80GeV < M_{\mu^+\mu^-} < 100GeV$: the invariant mass of dimuon should be in this range.
- $110GeV < M_{dimuon}^{rec} < 140GeV$: the recoil mass of the dimuon should be in this range.
- $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range.

• *BDT* score
$$> 0.15$$
 : BDT score greater than 0.15.

Table 10: Remained backgrounds (more than 1 event) after all of cuts applied.

name	scale	final
e2e2h_ww	0.08176	3
nnh_zz	0.06832	2
zz_sl0mu_down	1.08025726079	1
zz_sl0tau_up	1.10880522921	1

The input variable list is: M_{dimuon} , M_{dijet} , $M_{missing}$, N_{pfo} , $\cos \theta$, $\cos \theta_{visible}$, $Angle_{\mu^+\mu^--dijet}$, M_{dijet}^{rec} ,

- 218 $M_{visible}, P_{visible}, P_{T_{visible}}, E_{leading jet}, P_{T_{leading jet}}, E_{sub-leading jet}, P_{T_{sub-leading jet}}$. All the variables that are used
- in cut-based study are in the input variable list for BDT, except M_{dimuon}^{rec} , since it is the final observable.

Figure 14: Distribution of the recoil mass of dimuon, after the previous cuts applied, before BDT decision applied.

Figure 15: Distribution of the recoil mass of dimuon, after all of cuts & BDT decision applied.

Figure 16: Receiver Operating Characteristic (ROC) curve.

Figure 17: Classifier output distributions of signal and background.

Figure 18: $\frac{S}{\sqrt{S+B}}$ vs BDT score curve.

220 **4.2** $\mathbf{Z}(\rightarrow \mu^+\mu^-), \mathbf{H}(\mathbf{Z}\rightarrow q\bar{q}, \mathbf{Z}^*\rightarrow \nu\bar{\nu})$

221 4.2.1 Event selection (Cut-based only)

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	1000.88 ± 31.64	1140511±1067	801811977±28316	107203890±10353	.
Pre – selection	616.68 ± 24.83	30494 ± 174	480828±693	515448±717	
S ignal or not	211.44 ± 14.54	30282 ± 174	480828±693	515448±717	
$M_{missing} < M_{dijet}$	103.46 ± 10.17	28674 ± 169	365766 ± 604	486638±697	0.1102
N(pfo)	100.24 ± 10.01	21686 ± 147	12184 ± 110	332162±576	0.1657
M_{dimuon}	89.98 ± 9.49	16833 ± 129	9085 ± 95	207927±455	0.186
M_{dijet}	82.95 ± 9.11	2768 ± 52	52 ± 7	173775±416	0.1974
$M_{missing}$	71.56 ± 8.46	1679 ± 40	14 ± 3	13434 ± 115	0.5804
$*cos \theta$	71.56 ± 8.46	1679 ± 40	14 ± 3	13434 ± 115	0.5804
$cos \theta_{visible}$	67.99 ± 8.25	1535 ± 39	0 ± 0	8545 ± 92	0.6749
$Angle_{\mu j}$	60.89 ± 7.8	1187 ± 34	0 ± 0	2233 ± 47	1.0321
M^{rec}_{dimuon}	59.24 ± 7.7	1111 ± 33	0 ± 0	965 ± 31	1.2816
$*M_{dijet}^{rec}$	59.24 ± 7.7	1111 ± 33	0 ± 0	965 ± 31	1.2816
$M_{visible}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
$*P_{visible}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
$*P_{T_{visible}}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
$*E_{leading jet}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
$*P_{T_{leading jet}}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
$*E_{sub-leading jet}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
$*P_{T_{sub-leading jet}}$	55.35 ± 7.44	966 ±31	0 ± 0	805 ± 28	1.295
not qqHZZ	48.0 ± 6.93	774 ±27	0 ± 0	659 ± 25	1.247
not vvHZZ	48.0 ± 6.93	774 ±27	0 ± 0	659 ± 25	1.247 ± 0.3089

Table 11: Cut flow table for $\mu\mu qq\nu\nu$ channel

- The event selection cuts are listed below in sequence.
- $M_{miss} > M_{dijets}$: the missing mass is greater than the dijet invariant mass.
- $30 < N_{pfo} < 100$: Number of Prticle Flow Objects should be in this range.
- $80GeV < M_{\mu^+\mu^-} < 100GeV$: the invariant mass of the dimuon should be in this range.
- $60GeV < M_{dijet} < 105GeV$: the invariant mass of dijet should be in this range.

name	scale	final
e2e2h_bb	0.21896	419
e2e2h_cc	0.011032	5
e2e2h_e3e3	0.023968	5
e2e2h_gg	0.0326888819557	1
e2e2h_ww	0.08176	303
e2e2h_zz	0.010024	6
e3e3h_zz	0.009968099681	1
qqh_e3e3	0.4844	7
qqh_ww	1.6464	1
qqh_zz	0.20216	21
zz_sl0mu_up	1.09032214858	159
zz_sl0mu_down	1.08025726079	488
zz_sl0tau_down	1.10887174477	5
ww_sl0muq	1.2235862395	6

Table 12: Remained backgrounds (more than 1 event) after all of cuts applied.

Figure 19: Missing mass vs dijet invariant mass.

Figure 20: Number of PFOs.

Figure 21: Invariant mass of di-muons.

Figure 22: Invariant mass of di-jets.

Figure 23: Recoil mass of visible particles.

Figure 24: All visible particle $\cos \theta$

227	• $10GeV < M_{visible}^{Recoil} < 55GeV$: the recoil mass of all visible particles should be in this range.
228	• $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range.
229 230	• 60 < <i>Min angle</i> < 170°: Minimum angle between the two Z(Z*) reconstructed by leptons and jets should be within this range .
231	• $110GeV < M_{Recoil}^{dimuon} < 140GeV$: the recoil mass of the dimuon should be in this range.
232	• $175GeV < M_{visible} < 215GeV$: the visible mass of all particles should be in this range.
233	Two additional cuts:
234	• $M_{dijet}^{rec} < 122 GeV \text{ or } M_{dijet}^{rec} > 128 GeV$: To avoid the overlap events with qqHZZ signals.
235	• $M_{visible} < 122 GeV \text{ or } M_{visible} > 128 GeV$: To remove the overlap events with vvHZZ signals.

30

Figure 25: Minimum angle between the two $Z(Z^*)$ reconstructed by leptons and jets.

Figure 26: Recoil mass of di-muons.

Figure 27: Visible mass of all particles.

Figure 28: Distribution of the recoil mass of dimuon, after all of cuts applied.

4.2.2 Event selection combined with BDT method 236

=

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	1000	1140511	801811977	107203890	·
Pre – selection	616	30494	480828	515424	
Signal or not	211	30282	480828	515424	
$M_{missing} < M_{dijet}$	103	28674	365766	486613	0.1102
N(pfo)	100	21686	12184	332136	0.1657
M_{dimuon}	89	16833	9085	207927	0.186
M^{rec}_{dimuon}	87	16144	321	25675	0.4236
$\cos \theta_{visible}$	82	14667	0	12539	0.4992
BDT score	54	806	0	605	1.4262

.

.

Table 13: Cut flow table for $\mu\mu qq\nu\nu$ channel with BDT

•
$$M_{misssing} < M_{dijet}$$
: the missing mass is smaller than the dijet invariant mass.

• $30 < N_{pfo} < 100$: Number of PFO is greater than 30 and less than 100. 238

. .

- $80GeV < M_{\mu^+\mu^-} < 100GeV$: the invariant mass of dimuon should be in this range. 239
- $110GeV < M_{dimuon}^{rec} < 140GeV$: the recoil mass of the dimuon should be in this range. 240
- $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range. 241
- *BDT* score > 0.03 : BDT score greater than 0.03. 242

Table 14: Remained backgrounds (more than 5 event) after all of cuts applied.

name	scale	final
e2e2h_bb	0.21896	448
e2e2h_cc	0.011032	5
e2e2h_ww	0.08176	298
e2e2h_zz	0.010024	5
qqh_e3e3	0.4844	11
qqh_zz	0.20216	30
zz_sl0mu_up	1.09032214858	127
zz_sl0mu_down	1.08025726079	455
zz_sl0tau_down	1.10887174477	5
ww_sl0muq	1.10890944134	13

- The input variable list is: M_{dimuon} , M_{dijet} , $M_{missing}$, N_{pfo} , $\cos \theta$, $\cos \theta_{visible}$, $Angle_{\mu^+\mu^--dijet}$, M_{dijet}^{rec} ,
- 244 $M_{visible}, P_{visible}, P_{T_{visible}}, E_{leading jet}, P_{T_{leading jet}}, E_{sub-leading jet}, P_{T_{sub-leading jet}}$. All the variables that are used
- in cut-based study are in the input variable list for BDT, except M_{dimuon}^{rec} , since it is the final observable.

Figure 29: Distribution of the recoil mass of dimuon, after the previous cuts applied, before BDT decision applied.

Figure 30: Distribution of the recoil mass of dimuon, after all of cuts & BDT decision applied.

Figure 31: Receiver Operating Characteristic (ROC) curve.

Figure 32: Classifier output distributions of signal and background.

Figure 33: $\frac{S}{\sqrt{S+B}}$ vs BDT score curve.

²⁴⁶ 5 Event Selection of $Z(\rightarrow \nu\nu)H(ZZ^*\rightarrow \mu\mu qq)$

²⁴⁷ 5.1 Z($\rightarrow \nu \bar{\nu}$), H(ZZ* $\rightarrow \mu^+ \mu^- \rightarrow q\bar{q}$)

248 5.1.1 Event selection (Cut-based only)

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	6844.99±82.73	1140511±1067	801811977±28316	107203890±10353	
Pre – selection	238.62 ± 15.45	30494 ± 174	480828±693	515424±717	
S ignal or not	226.71±15.06	30268 ± 173	480828±693	515424±717	
$M_{dimuon} > M_{dijet}$	125.26 ± 11.19	2832 ± 53	421952±649	156993 ± 396	0.1642
N(pfo)	117.12 ± 10.82	1259 ± 35	60398 ± 245	68100 ± 260	0.325
$M_{missing}$	102.67 ± 10.13	147 ± 12	2152 ± 46	791 ±28	1.8168
M_{dimuon}	95.28 ± 9.76	136 ±11	1762 ± 41	258 ± 16	2.007
M_{dijet}	94.12 ±9.7	131 ±11	258 ± 16	204 ± 14	3.5888
$*cos \theta$	94.12 ±9.7	131 ±11	258 ± 16	204 ± 14	3.5888
$cos \theta_{visible}$	89.46 ± 9.46	125 ± 11	37 ± 6	57 ±7	5.0842
$Angle_{\mu j}$	83.85 ±9.16	72 ± 8	0 ± 0	16 ±4	6.3751
$*M^{rec}_{dimuon}$	83.85 ± 9.16	72 ± 8	0 ± 0	16 ±4	6.3751
$*M_{dijet}^{rec}$	83.85 ± 9.16	72 ± 8	0 ± 0	16 ±4	6.3751
$M_{visible}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
$*P_{visible}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
$*P_{T_{visible}}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
$*E_{leading \ jet}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
$*P_{T_{leading},jet}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
$*E_{sub-leading jet}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
$*P_{T_{sub-leading jet}}$	83.51 ± 9.14	56 ± 7	0 ± 0	11 ±3	6.7871
not $\mu^+\mu^-HZZ$	72.56 ± 8.52	17 ± 4	0 ± 0	9 ±3	7.2837
not qqHZZ	72.56 ± 8.52	17 ±4	0 ± 0	9 ±3	7.2837 ± 0.5858

Table 15: Cut flow table for $vv\mu\mu qq$ channel

- ²⁴⁹ The event selection cuts are listed below in sequence.
- $M_{dimuon} > M_{dijets}$: the dimuon invariant mass is greater than the dijet invariant mass.
- $20 < N_{pfo} < 60$: Number of Prticle Flow Objects should be in this range.
- $75GeV < M_{visible}^{Recoil} < 110GeV$: the recoil mass of all visible particles should be in this range.

• $60GeV < M_{\mu^+\mu^-} < 100GeV$: the invariant mass of the dimuon should be in this range.

scale	final
0.08176	4
0.010024	9
0.0812	2
1.10880522921	1
1.0404004004	1
1.10890944134	3
1.10899434445	1
1.10891486372	1
1.10916641266	1
	scale 0.08176 0.010024 0.0812 1.10880522921 1.0404004004 1.10890944134 1.10899434445 1.10891486372 1.10916641266

Table 16: Remained backgrounds (more than 1 event) after all of cuts applied.

Table 17: Remained backgrounds (more than 1 event) before final two cuts applied.

name	scale	final
e2e2h_e3e3	0.023968	1
e2e2h_ww	0.08176	13
e2e2h_zz	0.010024	39
e3e3h_ww	0.0812	2
zz_sl0tau_up	1.10880522921	2
zz_10taumu	1.0404004004	2
ww_sl0muq	1.10890944134	3
ww_sl0tauq	1.10899434445	1
zzorww_10mumu	1.10891486372	1
sze_10mu	1.10916641266	1

Figure 34: dimuon invariant mass vs dijet invariant mass.

Figure 35: Number of PFOs.

Figure 36: Recoil mass of visible particles.

Figure 37: Invariant mass of di-muons.

Figure 38: Invariant mass of di-jets.

254	• $10GeV < M_{dijet} < 55GeV$: the invariant mass of dijet should be in this range.
255	• $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range.
256 257	• <i>Min angle</i> < 135°: Minimum angle between the two Z(Z*) reconstructed by leptons and jets should be within this range .
258	• $110GeV < M_{visible} < 140GeV$: the invariant mass of all visible particles should be in this range.
259	Two additional cuts:
260	• $M_{dimuon}^{rec} < 122 GeV \text{ or } M_{dimuon}^{rec} > 128 GeV$: To avoid the overlap events with $\mu\mu$ HZZ signals.
261	• $M_{dijet}^{rec} < 122 GeV \text{ or } M_{dijet}^{rec} > 128 GeV$: To remove the overlap events with qq HZZ signals.

Figure 39: All visible particle $\cos \theta$

Figure 40: Minimum angle between the two $Z(Z^*)$ reconstructed by leptons and jets.

Figure 41: Invariant mass of all visible particles.

Figure 42: Distribution of the visible mass of all particles, after all of cuts applied.

262 5.1.2 Event selection combined with BDT method

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	6844	1140511	801811977	107203890	
Pre – selection	238	30494	480828	515424	
Signal or not	226	30268	480828	515424	
$M_{dimuon} > M_{dijet}$	125	2832	421952	156993	0.1642
N(pfo)	117	1259	60398	68100	0.325
$M_{missing}$	102	147	2152	791	1.8168
$M_{visible}$	101	82	696	325	2.9267
$cos \theta_{visible}$	96	77	124	79	4.9672
BDT score	80	12	0	27	7.383

Table 18: Cut flow table for $\nu\nu\mu\mu qq$ channel with BDT

• $M_{dimuon} > M_{dijet}$: the dimuon invariant mass is greater than the dijet invariant mass.

• $20 < N_{pfo} < 60$: Number of PFO is greater than 20 and less than 60.

- $75GeV < M_{missing} < 110GeV$: the missing mass should be in this range.
- $110GeV < M_{visible} < 140GeV$: the invariant mass of the summation of all visible particles should be in this range.
- $-0.95 < \cos \theta_{visible} < 0.95 : \cos \theta$ of the summation of all visible particles should be in this range.
- *BDT* score > -0.01 : BDT score greater than 0.15.

Table 19: Remained backgrounds (more than 1 event) after all of cuts applied.

name	scale	final
e2e2h_ww	0.08176	3
e2e2h_zz	0.010024	4
e3e3h_ww	0.0812	2
zz_sl0tau_up	1.10880522921	4
zz_10taumu	1.0404004004	3
ww_sl0muq	1.10890944134	9
ww_sl0tauq	1.10899434445	4
zzorww_10mumu	1.10891486372	3
sze_10mu	1.10916641266	1

- The input variable list is: M_{dimuon} , M_{dijet} , $M_{missing}$, N_{pfo} , $\cos \theta$, $\cos \theta_{visible}$, $Angle_{\mu^+\mu^--dijet}$, M_{dijet}^{rec} ,
- 271 M_{dimuon}^{rec} , $P_{visible}$, $P_{T_{visible}}$, $E_{leading jet}$, $P_{T_{leading jet}}$, $E_{sub-leading jet}$, $P_{T_{sub-leading jet}}$. All the variables that are used
- in cut-based study are in the input variable list for BDT, except $M_{visible}$, since it is the final observable.

Figure 43: Distribution of the visible mass, after the previous cuts applied, before BDT decision applied.

Figure 44: Distribution of the visible mass, after all of cuts & BDT decision applied.

Figure 45: Receiver Operating Characteristic (ROC) curve.

Figure 46: Classifier output distributions of signal and background.

Figure 47: $\frac{S}{\sqrt{S+B}}$ vs BDT score curve.

273 5.2 $Z(\rightarrow \nu\bar{\nu}), H(Z\rightarrow q\bar{q}, Z^*\rightarrow \mu^+\mu^-)$

274 5.2.1 Event selection (Cut-based only)

The event selection cuts are listed below in sequence.

Figure 48: dimuon invariant mass vs dijet invariant mass.

• $M_{dimuon} < M_{dijets}$: the dijet invariant mass is greater than the dimuon invariant mass.

• $30 < N_{pfo} < 100$: Number of Prticle Flow Objects should be in this range.

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	6844.99±82.73	1140511±1067	801811977±28316	107203890±10353	
Pre – selection	238.62 ± 15.45	30494 ± 174	480828±693	515424±717	
Signal or not	226.71±15.06	30268 ± 173	480828±693	515424±717	
$M_{dimuon} < M_{dijet}$	101.44 ± 10.07	27436 ± 165	58876 ± 242	358431±598	0.1521
N(pfo)	97.54 ± 9.88	20843 ± 144	364 ± 19	231698 ± 481	0.1939
$M_{missing}$	79.06 ± 8.89	769 ± 27	37 ± 6	2083 ± 45	1.4508
M_{dimuon}	78.38 ± 8.85	707 ± 26	7 ±2	1732 ± 41	1.5596
M_{dijet}	68.04 ± 8.25	576 ± 24	0 ± 0	830 ± 28	1.7719
$*cos \theta$	68.04 ± 8.25	576 ± 24	0 ± 0	830 ± 28	1.7719
$cos \theta_{visible}$	64.55 ± 8.03	552 ± 23	0 ± 0	452 ± 21	1.9743
$Angle_{\mu j}$	60.65 ± 7.79	269 ± 16	0 ± 0	78 ± 8	2.9985
$*M^{rec}_{dimuon}$	60.65 ± 7.79	269 ± 16	0 ± 0	78 ± 8	2.9985
$*M_{diiet}^{rec}$	60.65 ± 7.79	269 ± 16	0 ± 0	78 ± 8	2.9985
$M_{visible}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
$*P_{visible}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
$*P_{T_{visible}}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
$*E_{leading \ jet}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
$*P_{T_{leading jet}}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
$*E_{sub-leading jet}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
$*P_{T_{sub-leading} iet}$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
not $\mu^+\mu^-HZZ$	59.89 ± 7.74	211 ± 14	0 ± 0	65 ± 8	3.2662
not qqHZZ	52.3 ± 7.23	159 ± 12	0 ± 0	52 ±7	3.2227 ± 0.4654

Table 20: Cut flow table for $\nu\nu qq\mu\mu$ channel

Table 21: Remained backgrounds (more than 1 event) after all of cuts applied.

name	scale	final
e2e2h_bb	0.21896	8
e2e2h_ww	0.08176	7
e3e3h_bb	0.21784	3
e3e3h_ww	0.0812	11
qqh_e3e3	0.4844	50
qqh_ww	1.6464	55
qqh_zz	0.20216	18
zz_sl0mu_down	1.08025726079	3
zz_sl0tau_up	1.10880522921	9
zz_sl0tau_down	1.10887174477	25
ww_sl0muq	1.10890944134	2
ww_sl0tauq	1.10899434445	4
sze_10mu	1.10916641266	6

Figure 49: Number of PFOs.

Figure 50: Recoil mass of visible particles.

• $75GeV < M_{visible}^{Recoil} < 110GeV$: the recoil mass of all visible particles should be in this range.

Figure 51: Invariant mass of di-muons.

• $10GeV < M_{\mu^+\mu^-} < 60GeV$: the invariant mass of the dimuon should be in this range. 279 • $60GeV < M_{dijet} < 100GeV$: the invariant mass of dijet should be in this range. 280 • $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range. 281 • *Min angle* < 135° : Minimum angle between the two Z(Z*) reconstructed by leptons and jets 282 should be within this range. 283 • $110GeV < M_{visible} < 140GeV$: the invariant mass of all visible particles should be in this range. 284 Two additional cuts: 285 • $M_{dimuon}^{rec} < 122 GeV \text{ or } M_{dimuon}^{rec} > 128 GeV$: To avoid the overlap events with $\mu\mu$ HZZ signals. 286 • $M_{dijet}^{rec} < 122 GeV \text{ or } M_{dijet}^{rec} > 128 GeV$: To remove the overlap events with qqHZZ signals. 287

Figure 52: Invariant mass of di-jets.

Figure 53: All visible particle $\cos \theta$

Figure 54: Minimum angle between the two $Z(Z^*)$ reconstructed by leptons and jets.

Figure 55: Invariant mass of all visible particles.

Figure 56: Distribution of the visible mass of all particles, after all of cuts applied.

288 5.2.2 Event selection combined with BDT method

• $M_{dimuon} < M_{dijet}$: the dimuon invariant mass is smaller than the dijet invariant mass.

• $30 < N_{pfo} < 100$: Number of PFO is greater than 30 and less than 100.

- $75GeV < M_{missing} < 110GeV$: the missing mass should be in this range.
- $110GeV < M_{visible} < 140GeV$: the invariant mass of the summation of all visible particles should be in this range.
- $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range.
- *BDT* score > 0: BDT score greater than 0.
- The input variable list is: M_{dimuon} , M_{dijet} , $M_{missing}$, N_{pfo} , $\cos \theta$, $\cos \theta_{visible}$, $Angle_{\mu^+\mu^--dijet}$, M_{dijet}^{rec} ,
- 297 M_{dimuon}^{rec} , $P_{visible}$, $P_{T_{visible}}$, $E_{leading jet}$, $P_{T_{leading jet}}$, $E_{sub-leading jet}$, $P_{T_{sub-leading jet}}$. All the variables that are used
- in cut-based study are in the input variable list for BDT, except $M_{visible}$, since it is the final observable.

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	6844	1140511	801811977	107203890	
Pre – selection	238	30494	480828	515424	
S ignal or not	226	30268	480828	515424	
$M_{dimuon} < M_{dijet}$	101	27436	58876	358431	0.1521
N(pfo)	97	20843	364	231698	0.1939
$M_{missing}$	79	769	37	2083	1.4508
$M_{visible}$	76	445	0	910	2.0327
$cos \theta_{visible}$	73	430	0	360	2.4836
BDT score	47	76	0	16	3.9875

Table 22: Cut flow table for $\nu\nu qq\mu\mu$ channel with BDT

Table 23: Remained backgrounds (more than 1 event) after all of cuts applied.

name	scale	final
e2e2h_bb	0.21896	4
e2e2h_ww	0.08176	4
e3e3h_ww	0.0812	3
qqh_e3e3	0.4844	21
qqh_ww	1.6464	29
qqh_zz	0.20216	11
zz_sl0mu_down	1.08025726079	2
zz_sl0tau_up	1.10880522921	1
zz_sl0tau_down	1.10887174477	7
ww_sl0muq	1.10890944134	4
ww_sl0tauq	1.10899434445	1

Figure 57: Distribution of the visible mass, after the previous cuts applied, before BDT decision applied.

Figure 58: Distribution of the visible mass, after all of cuts & BDT decision applied.

Figure 59: Receiver Operating Characteristic (ROC) curve.

Figure 60: Classifier output distributions of signal and background.

Figure 61: $\frac{S}{\sqrt{S+B}}$ vs BDT score curve.

²⁹⁹ 6 Event Selection of $Z(\rightarrow qq)H(ZZ^*\rightarrow \nu\nu\mu\mu)$

300 **6.1** $\mathbf{Z}(\rightarrow q\bar{q}), \mathbf{H}(\mathbf{Z} \rightarrow \nu \bar{\nu}, \mathbf{Z}^* \rightarrow \mu^+ \mu^-)$

301 6.1.1 Event selection (Cut-based only)

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	20254.08±142.32	1140511±1067	801811977±28316	107203890±10353	1
Pre – selection	826.57 ± 28.75	30494 ± 174	480828±693	515424±717	
Signal or not	203.35 ± 14.26	30291 ± 174	480828±693	515424±717	
$M_{missing} > M_{dimuon}$	94.99 ±9.75	3179 ± 56	18606 ± 136	40769 ± 201	0.3795
N(pfo)	84.66 ± 9.2	2242 ± 47	1212 ± 34	12626 ± 112	0.6659
M_{dijet}	75.14 ± 8.67	1532 ± 39	7 ±2	4965 ± 70	0.9263
M_{dimuon}	68.05 ± 8.25	1231 ± 35	0 ± 0	2803 ± 52	1.0623
$M_{missing}$	57.72 ± 7.6	575 ± 23	0 ± 0	572 ± 23	1.6625
$*cos \theta$	57.72 ± 7.6	575 ± 23	0 ± 0	572 ± 23	1.6625
$cos \theta_{visible}$	55.09 ± 7.42	551 ± 23	0 ± 0	403 ± 20	1.7334
$*Angle_{\mu j}$	55.09 ± 7.42	551 ± 23	0 ± 0	403 ± 20	1.7334
M^{rec}_{dimuon}	53.47 ±7.31	493 ± 22	0 ± 0	348 ± 18	1.7877
M_{diiet}^{rec}	51.24 ± 7.16	418 ± 20	0 ± 0	237 ±15	1.9265
$M_{visible}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
$*P_{visible}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
$*P_{T_{visible}}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
$*E_{leading jet}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
$*P_{T_{leading_jet}}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
$*E_{sub-leading jet}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
$*P_{T_{sub-leading jet}}$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
not $\mu^+\mu^-HZZ$	48.0 ± 6.93	374 ± 19	0 ± 0	209 ± 14	1.9087
not vvHZZ	41.72 ± 6.46	326 ± 18	0 ± 0	190 ±13	1.764 ± 0.3625

Table 24: Cut flow table for $qqvv\mu\mu$ channel

- ³⁰² The event selection cuts are listed below in sequence.
- $M_{miss} > M_{dimuon}$: the missing mass is greater than the dimuon invariant mass.
- $40 < N_{pfo} < 95$: Number of Prticle Flow Objects should be in this range.
- $75GeV < M_{dijet} < 105GeV$: the invariant mass of dijet should be in this range.
- $15GeV < M_{\mu^+\mu^-} < 55GeV$: the invariant mass of the dimuon should be in this range.

name	scale	final
e2e2h_bb	0.21896	12
e2e2h_ww	0.08176	4
e3e3h_bb	0.21784	8
e3e3h_ww	0.0812	10
nnh_zz	0.06832	18
qqh_e3e3	0.4844	182
qqh_ww	1.6464	87
zz_sl0mu_up	1.09032214858	4
zz_sl0mu_down	1.08025726079	5
zz_sl0tau_up	1.10880522921	58
zz_sl0tau_down	1.10887174477	115
sze_10mu	1.10916641266	6

Table 25: Remained backgrounds (more than 1 event) after all of cuts applied.

Figure 62: Missing mass vs dimuon invariant mass.

Figure 63: Number of PFOs.

Figure 64: Invariant mass of di-jets.

Figure 65: Invariant mass of di-muons.

Figure 66: Recoil mass of visible particles.

• $70GeV < M_{visible}^{Recoil} < 110GeV$: the recoil mass of all visible particles should be in this range.

Figure 67: All visible particle $\cos \theta$

•
$$-0.95 < cos \theta_{visible} < 0.95$$
: $cos \theta$ of the summation of all visible particles should be in this range.
• $175GeV < M_{Recoil}^{dimuon} < 215GeV$: the recoil mass of the dimuon should be in this range.
• $110GeV < M_{Recoil}^{dijet} < 140GeV$: the recoil mass of the dijet should be in this range.
• $115GeV < M_{visible} < 155GeV$: the visible mass of all particles should be in this range.
• $115GeV < M_{visible} < 155GeV$: the visible mass of all particles should be in this range.
• $M_{visible}^{rec} < 122GeV$ or $M_{dimuon}^{rec} > 128GeV$: To avoid the overlap events with $\mu\mu$ HZZ signals.
• $M_{visible} < 122GeV$ or $M_{visible} > 128GeV$: To remove the overlap events with $\nu\nu$ HZZ signals.

Figure 68: Recoil mass of di-muons.

Figure 69: Recoil mass of di-jets.

Figure 70: Visible mass of all particles.

Figure 71: Distribution of the recoil mass of dijet, after all of cuts applied.

315 6.1.2 Event selection combined with BDT method

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	20254	1140511	801811977	107203890	
Pre – selection	826	30494	480828	515424	
Signal or not	203	30291	480828	515424	
$M_{missing} > M_{dimuon}$	94	3179	18606	40769	0.3795
N(pfo)	84	2242	1212	12626	0.6659
M_{dijet}	75	1532	7	4965	0.9263
M_{dijet}^{rec}	70	1318	0	1381	1.3315
$cos \theta_{visible}$	67	1259	0	541	1.551
BDT score	48	305	0	116	2.2226

Table 26: Cut flow table for $qqvv\mu\mu$ channel with BDT

• $M_{missing} > M_{dimuon}$: the missing mass is greater than the dimuon invariant mass.

• $40 < N_{pfo} < 95$: Number of PFO is greater than 40 and less than 95.

- $75GeV < M_{dijet} < 105GeV$: the invariant mass of dijet should be in this range.
- $110GeV < M_{dijet}^{rec} < 140GeV$: the recoil mass of the dijet should be in this range.
- $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range.
- BDT score > -0.05 : BDT score greater than -0.05.

Table 27: Remained backgrounds (more than 5 event) after all of cuts applied.

name	scale	final
e2e2h_bb	0.21896	6
e3e3h_bb	0.21784	6
e3e3h_ww	0.0812	6
nnh_zz	0.06832	24
qqh_e3e3	0.4844	151
qqh_ww	1.6464	107
zz_sl0tau_up	1.10880522921	36
zz_sl0tau_down	1.10887174477	76

- The input variable list is: M_{dimuon} , M_{dijet} , $M_{missing}$, N_{pfo} , $\cos \theta$, $\cos \theta_{visible}$, $Angle_{\mu^+\mu^--dijet}$, M_{dimuon}^{rec} ,
- 323 $M_{visible}, P_{visible}, P_{T_{visible}}, E_{leading jet}, P_{T_{leading jet}}, E_{sub-leading jet}, P_{T_{sub-leading jet}}$. All the variables that are used
- in cut-based study are in the input variable list for BDT, except M_{dijet}^{rec} , since it is the final observable.

Figure 72: Distribution of the recoil mass of dijet, after the previous cuts applied, before BDT decision applied.

Figure 73: Distribution of the recoil mass of dijet, after all of cuts & BDT decision applied.

Figure 74: Receiver Operating Characteristic (ROC) curve.

Figure 75: Classifier output distributions of signal and background.

Figure 76: $\frac{S}{\sqrt{S+B}}$ vs BDT score curve.

325 **6.2** $\mathbf{Z}(\rightarrow q\bar{q}), \mathbf{H}(\mathbf{Z}\rightarrow \mu^+\mu^-, \mathbf{Z}^*\rightarrow \nu\bar{\nu})$

326 6.2.1 Event selection (Cut-based only)

The event selection cuts are listed below in sequence.

Figure 77: Missing mass vs dimuon invariant mass.

- $M_{miss} < M_{dimuon}$: the dimuon invariantmass is greater than the missing mass.
- $40 < N_{pfo} < 95$: Number of Prticle Flow Objects should be in this range.

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	20254.08±142.32	1140511±1067	801811977±28316	107203890±10353	
Pre – selection	826.57 ± 28.75	30494 ± 174	480828±693	515424±717	
Signal or not	203.35 ± 14.26	30291 ± 174	480828±693	515424±717	
$M_{missing} < M_{dimuon}$	108.36 ± 10.41	27112 ± 164	462222±679	474655 ± 688	0.1104
N(pfo)	96.21 ±9.81	17726 ± 133	10817 ± 104	290704 ± 539	0.1702
M_{dijet}	87.7 ± 9.36	3248 ± 56	14 ± 3	225594 ± 474	0.1833
M_{dimuon}	74.94 ± 8.66	2356 ± 48	7 ±2	157235 ± 396	0.1875
$M_{missing}$	57.52 ± 7.58	1434 ± 37	0 ± 0	9677 ± 98	0.5443
$*cos \theta$	57.52 ± 7.58	1434 ± 37	0 ± 0	9677 ± 98	0.5443
$cos \theta_{visible}$	54.48 ± 7.38	1313 ± 36	0 ± 0	5748 ± 75	0.6459
$Angle_{\mu j}$	48.2 ± 6.94	952 ± 30	0 ± 0	1160 ± 34	1.037
M^{rec}_{dimuon}	46.18 ± 6.8	949 ± 30	0 ± 0	587 ± 24	1.1606
M_{diiet}^{rec}	43.34 ± 6.58	733 ± 27	0 ± 0	472 ±21	1.2264
$M_{visible}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
$*P_{visible}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
$*P_{T_{visible}}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
$*E_{leading jet}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
$*P_{T_{leading jet}}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
$*E_{sub-leading jet}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
$*P_{T_{sub-leading_{jet}}}$	40.71 ± 6.38	647 ± 25	0 ± 0	418 ± 20	1.2237
not $\mu^+\mu^-HZZ$	35.44 ± 5.95	206 ± 14	0 ± 0	305 ± 17	1.5143
not vvHZZ	35.44 ± 5.95	206 ± 14	0 ± 0	305 ± 17	1.5143 ± 0.3527

Table 28: Cut flow table for $qq\mu\mu\nu\nu$ channel

Table 29: Remained backgrounds (more than 1 event) after all of cuts applied.

name	scale	final
e2e2h_bb	0.21896	120
e2e2h_cc	0.011032	1
e2e2h_ww	0.08176	55
e2e2h_zz	0.010024	8
qqh_e3e3	0.4844	15
qqh_ww	1.6464	1
zz_sl0mu_up	1.09032214858	85
zz_sl0mu_down	1.08025726079	217
zz_sl0tau_up	1.10880522921	1
zz_sl0tau_down	1.10887174477	1
ww_sl0muq	1.10890944134	1

Figure 78: Number of PFOs.

Figure 79: Invariant mass of di-jets.

• $75GeV < M_{dijet} < 105GeV$: the invariant mass of dijet should be in this range.

Figure 80: Invariant mass of di-muons.

• $75GeV < M_{\mu^+\mu^-} < 100GeV$: the invariant mass of the dimuon should be in this range. 331 • $10GeV < M_{visible}^{Recoil} < 50GeV$: the recoil mass of all visible particles should be in this range. 332 $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range. 333 • $120 < Min angle < 170^{\circ}$: Minimum angle between the two Z(Z*) reconstructed by leptons and 334 jets should be within this range. 335 • $115GeV < M_{Recoil}^{dimuon} < 155GeV$: the recoil mass of the dimuon should be in this range. 336 • $110GeV < M_{Recoil}^{dijet} < 140GeV$: the recoil mass of the dijet should be in this range. 337 • $185GeV < M_{visible} < 215GeV$: the visible mass of all particles should be in this range. 338 Two additional cuts: 339 • $M_{dimuon}^{rec} < 122 GeV \text{ or } M_{dimuon}^{rec} > 128 GeV$: To avoid the overlap events with $\mu\mu$ HZZ signals. 340 • $M_{visible} < 122 GeV \text{ or } M_{visible} > 128 GeV$: To remove the overlap events with vvHZZ signals. 341

Figure 81: Recoil mass of visible particles.

Figure 82: All visible particle $\cos \theta$

Figure 83: Minimum angle between the two $Z(Z^*)$ reconstructed by leptons and jets.

Figure 84: Recoil mass of di-muons.

Figure 85: Recoil mass of di-jets.

Figure 86: Visible mass of all particles.

Figure 87: Distribution of the recoil mass of dijet, after all of cuts applied.

342 6.2.2 Event selection combined with BDT method

343	• $M_{missing} > M_{dimuon}$: the missing mass is greater than the dimuon invariant mass.
344	• $35 < N_{pfo} < 100$: Number of PFO is greater than 35 and less than 100.
345	• $75GeV < M_{dijet} < 110GeV$: the invariant mass of dijet should be in this range.
346	• $110GeV < M_{dijet}^{rec} < 140GeV$: the recoil mass of the dijet should be in this range.
347	• $-0.95 < \cos \theta_{visible} < 0.95$: $\cos \theta$ of the summation of all visible particles should be in this range.
348	• <i>BDT</i> score > -0.02 : BDT score greater than -0.02.

The input variable list is: M_{dimuon} , M_{dijet} , $M_{missing}$, N_{pfo} , $cos \theta$, $cos \theta_{visible}$, $Angle_{\mu^+\mu^--dijet}$, M_{dimuon}^{rec} , $M_{visible}$, $P_{visible}$, $P_{T_{visible}}$, $E_{leading jet}$, $P_{T_{leading jet}}$, $E_{sub-leading jet}$, $P_{T_{sub-leading jet}}$. All the variables that are used in cut-based study are in the input variable list for BDT, except M_{dijet}^{rec} , since it is the final observable.

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	20254	1140511	801811977	107203890	·
Pre – selection	826	30494	480828	515424	
Signal or not	203	30291	480828	515424	
$M_{missing} < M_{dimuon}$	108	27112	462222	474655	0.1104
N(pfo)	103	19806	17185	313602	0.1741
M_{dijet}	97	4531	44	250527	0.1937
M^{rec}_{dijet}	88	3385	7	33021	0.4622
$cos \theta_{visible}$	82	3081	0	18293	0.56
BDT score	33	161	0	51	2.1536

Table 30: Cut flow table for $qq\mu\mu\nu\nu$ channel with BDT

Table 31: Remained backgrounds (more than 5 event) after all of cuts applied.

name	scale	final
e2e2h_bb	0.21896	24
e2e2h_ww	0.08176	18
qqh_e3e3	0.4844	81
qqh_ww	1.6464	31
zz_sl0mu_down	1.08025726079	27
zz_sl0tau_down	1.10887174477	16

Figure 88: Distribution of the recoil mass of dijet, after the previous cuts applied, before BDT decision applied.

Figure 89: Distribution of the recoil mass of dijet, after all of cuts & BDT decision applied.

Figure 90: Receiver Operating Characteristic (ROC) curve.

Figure 91: Classifier output distributions of signal and background.

Figure 92: $\frac{S}{\sqrt{S+B}}$ vs BDT score curve.

352 7 Result

353 7.1 summary of event selection

7.1.1 summary of event selection (cut-based only)

Table 32: Overview of the requirements applied when selecting events (cut-based)).
Pre-selections	

Pre-selections							
N(l) = 2, where leptor	N(l) = 2, where leptons(l) should pass the isolation criteria						
$N(\mu^+) = 1, N(\mu^-) = 1$	$N(\mu^+) = 1, N(\mu^-) = 1$ with $E(\mu^{\pm}) > 3$ GeV						
N(jet) = 2							
Variable	μμHvvqq	$\mu\mu$ Hqqvv	ννHμμqq	vvHqqμμ	$qqH\nu\nu\mu\mu$	qqΗμμνν	
$M_{\mu\mu}$ (GeV)	[80,100]	[80,100]	[60, 100]	[10, 60]	[15, 55]	[75, 100]	
$M_{\rm jj}~({\rm GeV})$	[15, 60]	[60, 105]	[10, 55]	[60, 100]	[75, 105]	[75,105]	
$M_{\rm miss.}$ (GeV)	[75, 105]	[10, 55]	[75, 110]	[75, 110]	[70, 110]	[10, 50]	
$M_{\mu\mu}^{\rm recoil}$ (GeV)	[110, 140]	[110, 140]	-	-	[175, 215]	[115, 155]	
$M_{\rm vis.}$ (GeV)	-	[175,215]	[110, 140]	[110, 140]	[115, 155]	[185, 215]	
M_{jj}^{recoil} (GeV)	[185,210]	-	-	-	[110, 140]	[110, 140]	
N _{PFO}	[20, 90]	[30, 100]	[20, 60]	[30, 100]	[40, 95]	[40, 95]	
$ \cos \theta_{\rm vis.} $			< 0).95			
$\Delta \phi_{ZZ}$ (degree)	[60, 170]	[60, 170]	< 135	< 135	-	[120, 170]	
$ M_{\rm vis.} - M_{\rm H} $ (GeV)	> 3	> 3	-	-	> 3	> 3	
$M_{\rm ii}^{\rm recoil} - M_{\rm H}$ (GeV)	> 3	> 3	> 3	> 3	-	-	
$M_{\mu\mu}^{\tilde{recoil}} - M_{\rm H}$ (GeV)	-	-	> 3	> 3	> 3	> 3	

355 **7.1.2** summary of event selection (BDT)

Table 33: Overview of the requirements applied when selecting events (cut-based).
Pro solactions

Pre-selections						
N(l) = 2, where	e leptons(l) sl	hould pass the	e isolation cri	teria		
$N(\mu^+) = 1, N(\mu^+) = 1$	u^{-}) = 1 with	$E(\mu^{\pm}) > 3 \text{ Ge}$	eV			
N(jet) = 2						
Variable	$\mu\mu$ H $\nu\nu qq$	$\mu\mu$ Hqqvv	vvHμμqq	vvHqqμμ	$qqH\nu\nu\mu\mu$	$qqH\mu\mu\nu\nu$
$M_{\mu\mu}$ (GeV)	[80,100]	[80,100]	-	-	-	-
$M_{\rm jj}~({\rm GeV})$	-	-	-	-	[75, 105]	[75,110]
$M_{\rm miss.}$ (GeV)	-	-	[75, 110]	[75, 110]	-	-
$M_{\mu\mu}^{\rm recoil}$ (GeV)	[110, 140]	[110, 140]	-	-	-	-
$M_{\rm vis.}$ (GeV)	-	-	[110, 140]	[110, 140]	-	-
M_{ii}^{recoil} (GeV)	-	-	-	-	[110, 140]	[110, 140]
BDT score	> 0.15	> 0.03	> -0.01	> 0.00	> -0.05	> -0.02
$N_{\rm PFO}$	[20, 90]	[30, 100]	[20, 60]	[30, 100]	[40, 95]	[35, 100]
$ \cos \theta_{\rm vis.} $			< 0).95		

7.2 Final Higgs mass distributions and fitting results.

357 **7.2.1** μμννqq channel

Figure 93: Final Higgs mass distribution Figure 94: Fit result of $\mu\mu\nu\nu\eta q$ (cutof $\mu\mu\nu\nu\eta q$ (cut-based).

Figure 95: Final Higgs mass distribution figure 96: Fit results of $\mu\mu\nu\nu\eta q$ (BDT).

Figure 96: Fit result of $\mu\mu\nu\nu qq$ (BDT).

Figure 97: Final Higgs mass distribution Figure 98: Fit result of $\mu\mu qq\nu\nu$ (cutof $\mu\mu qq\nu\nu$ (cut-based).

Figure 99: Final Higgs mass distribution figure 100: Fit result of $\mu\mu qq\nu\nu$ (BDT).

Figure 101: Final Higgs mass distribution Figure 102: Fit result of $vv\mu\mu qq$ (cutof $vv\mu\mu qq$ (cut-based).

Figure 103: Final Higgs mass distribution Figure 104: Fit result of $vv\mu\mu qq +$ of $vv\mu\mu qq$ (BDT). $vvqq\mu\mu$ (BDT).

Figure 105: Final Higgs mass distribution Figure 106: Fit result of $vvqq\mu\mu$ (cutof $vvqq\mu\mu$ (cut-based).

Figure 107: Final Higgs mass distribution figure 108: Fit result of $\nu\nu qq\mu\mu$ (BDT).

Figure 109: Final Higgs mass distribution Figure 110: Fit result of $qqvv\mu\mu$ (cutof $qqvv\mu\mu$ (cut-based).

Figure 111: Final Higgs mass distribution figure 112: Fit result of $qqvv\mu\mu$ (BDT).

Figure 113: Final Higgs mass distribution Figure 114: Fit result of $qq\mu\mu\nu\nu$ (cutof $qq\mu\mu\nu\nu$ (cut-based).

Figure 115: Final Higgs mass distribution figure 116: Fit result of $qq\mu\mu\nu\nu$ (BDT).

363 7.3 Calculations

364 7.3.1 Cut-based calculations

According to the fit results,

precision of
$$\sigma_{ZH} * BR_{signal}$$
:
$$\frac{\Delta \sigma_{ZH} * BR_{signal}}{\sigma_{ZH} * BR_{signal}}$$

is:

 For μμννqq : 18.1460%

 For μμqqνν : 65.3726%

 For ννμμqq : 13.4518%

 For ννqqμμ : 27.7434%

 For qqννμμ : 54.2559%

 For qqμμνν : 63.5335%

Combine results of Precision of Branch ratio of Higgs to ZZ is:

9.7121%

Branch ratio of Higgs to ZZ is

 $\frac{N_{signal}}{L\sigma_{ZH}Br_{Z\to\mu\mu}Br_{Z\to\nu\nu}Br_{Z\to jj}\epsilon}:$

For µµvvqq :	$2.640\% \pm 0.479\%$
For µµqqvv :	2.639% ± 1.725%
For vvµµqq :	$2.640\% \pm 0.352\%$
For vvqqµµ :	$2.640\% \pm 0.759\%$
For qqvvµµ :	$2.640\% \pm 1.432\%$
For qqµµvv :	$2.640\% \pm 1.677\%$

Combine results of Branch ratio of Higgs to ZZ is:

 $2.640\% \pm 0.256\%$

365 7.3.2 BDT-based calculations

According to the fit results,

precision of
$$\sigma_{ZH} * BR_{signal}$$
: $\frac{\Delta \sigma_{ZH} * BR_{signal}}{\sigma_{ZH} * BR_{signal}}$

is:

<i>For μμννqq</i> : 15.7951%
<i>For µµqqvv</i> : 58.1635%
<i>For vvµµqq</i> : 13.0643%
<i>For vvqqµµ</i> : 23.6133%
<i>For qqvvμμ</i> : 45.1548%
<i>For qqµµvv</i> : 46.0849%

Combine results of Precision of Branch ratio of Higgs to ZZ is:

9.4782%

Branch ratio of Higgs to ZZ is

N _{signal}	
$\overline{L\sigma_{ZH}Br_{Z\to\mu\mu}Br_{Z\to\nu\nu}Br_{Z\to jj}\epsilon}$	•

For µµvvqq :	$2.640\% \pm 0.417\%$
For µµqqvv :	2.639% ± 1.536%
For vvµµqq :	$2.640\% \pm 0.345\%$
For vvqqµµ :	$2.640\% \pm 0.623\%$
For qqvvµµ :	$2.640\% \pm 1.192\%$
For qqµµvv :	2.640% ± 1.217%

Combine results of Branch ratio of Higgs to ZZ is:

 $2.640\% \pm 0.250\%$

Channel	Cut-based	BDT
μμννqq	18.1460%	15.7951%
μμqqvv	65.3726%	58.1635%
vvµµqq	13.4518%	13.0643%
vvqqµµ	27.7434%	23.6133%
qqvvμμ	54.2559%	45.1548%
qqμμνν	63.5335%	46.0849%
Combined	9.7121%	9.4782%

Table 34: Cut-based and BDT final precision comparison.

366 7.3.3 Comparison between cut-based and BDT

Equations used for calculation of precision of Higgs width:

$$\Gamma_{H} = \frac{\Gamma_{H->ZZ^{*}}}{Br_{H->ZZ^{*}}} \propto \frac{\sigma_{ZH}}{Br_{H->ZZ^{*}}}$$

$$Precision of \ \Gamma_{H} : \frac{\Delta\Gamma_{H}}{\Gamma_{H}} = \sqrt{\left(\frac{\Delta\sigma_{ZH}}{\sigma_{ZH}}\right)^{2} + \left(\frac{\Delta Br_{H->ZZ^{*}}}{Br_{H->ZZ^{*}}}\right)^{2}}$$

367 8 Backup

368 8.1 v1.0 result conclusion

summary of event selections for v1.0. Since v1.0 is consistent with v1.1, so we choose the unified

version for the baseline cut-based selection.

Table 35: Overview of the requirements applied when selecting events.

Pre-selections						
N(l) = 2, where leptons(l) should pass the isolation criteria						
$N(\mu^+) = 1, N(\mu^-) = 1$ with $E(\mu^{\pm}) > 3$ GeV						
N(jet) = 2						
Variable	μμHvvqq	ννHμμqq	vvHqqμμ	$qqH\nu\nu\mu\mu$	$qqH\mu\mu\nu\nu$	$\mu\mu$ Hqqvv
$M_{\mu\mu}$ (GeV)	[80, 100]	[60, 100]	[10, 60]	[15, 55]	[75, 100]	[80, 100]
$M_{\rm jj}~({\rm GeV})$	[15, 60]	[10, 55]	[60, 100]	[75, 105]	[75, 110]	[60, 105]
$M_{\rm miss.}$ (GeV)	[75, 105]	[75, 110]	[75, 110]	[70, 110]	[10, 50]	[10, 55]
$M_{\mu\mu}^{\rm recoil}$ (GeV)	[110, 140]	-	[165, 215]	[175, 215]	[115, 155]	[110, 140]
$M_{\rm vis.}$ (GeV)	-	[110, 140]	[110, 140]	[115, 155]	[185, 215]	[175, 215]
M_{ii}^{recoil} (GeV)	[185, 220]	-	-	[110, 140]	[110, 140]	-
N _{PFO}	[20, 90]	[20, 60]	[30, 100]	[40, 95]	[35, 100]	[30, 100]
$ \cos \theta_{\rm vis.} $	< 0.95					
$\Delta \phi_{\rm ZZ}$ (degree)	[60, 170]	< 135	< 130	-	[120, 170]	[120, 170]
$ M_{\rm vis.} - M_{\rm H} $ (GeV)	> 3	-	-	> 3	> 3	> 3
$M_{\rm ii}^{\rm recoil} - M_{\rm H}$ (GeV)	> 3	> 3	> 3	-	-	> 3
$M_{\mu\mu}^{\tilde{recoil}} - M_{\rm H}$ (GeV)	-	> 3	> 3	> 3	> 3	-

And the precision fitting result for v1.0 is shown below.

precision of $\sigma_{au} * BR$	$\Delta \sigma_{ZH} * BR_{signal}$
precision of OZH * DR _{signal} .	$\sigma_{ZH} * BR_{signal}$

is:

<i>For µµvvqq</i> : 18.146%
For µµqqvv : 65.2495%
<i>For vvµµqq</i> : 13.4518%
<i>For ννqqμμ</i> : 27.8294%
<i>For qqvvμμ</i> : 54.256%
For qqµµvv : 63.9272%
Combined : 9.68%

³⁷¹ Branch ratio of Higgs to ZZ is:

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	1000.88 ± 31.64	1140511 ± 1067	801811977±28316	107203890±10353	
Pre – selection	616.68 ± 24.83	30494 ± 174	480828±693	515448±717	
S ignal or not	211.44 ± 14.54	30282 ± 174	480828±693	515448±717	
$M_{missing} < M_{dijet}$	103.46 ± 10.17	28674 ± 169	365766 ± 604	486638±697	0.1102
N(pfo)	100.24 ± 10.01	21686 ± 147	12184 ± 110	332162±576	0.1657
M_{dimuon}	89.98 ± 9.49	16833 ± 129	9085 ± 95	207927±455	0.186
M_{dijet}	82.95 ± 9.11	2768 ± 52	52 ± 7	173775±416	0.1974
$M_{missing}$	71.56 ± 8.46	1679 ± 40	14 ± 3	13434 ± 115	0.5804
$*cos \theta$	71.56 ± 8.46	1679 ± 40	14 ± 3	13434 ± 115	0.5804
$cos \theta_{visible}$	67.99 ± 8.25	1535 ± 39	0 ± 0	8545 ± 92	0.6749
$Angle_{\mu j}$	57.71 ± 7.6	1109 ± 33	0 ± 0	2197 ± 46	0.995
M^{rec}_{dimuon}	56.5 ± 7.52	1048 ± 32	0 ± 0	941 ± 30	1.2488
$*M_{dijet}^{rec}$	56.5 ± 7.52	1048 ± 32	0 ± 0	941 ± 30	1.2488
$M_{visible}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
$*P_{visible}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
$*P_{T_{visible}}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
$*E_{leading jet}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
$*P_{T_{leading}\ jet}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
$*E_{sub-leading jet}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
$*P_{T_{sub-leading jet}}$	54.02 ± 7.35	930 ± 30	0 ± 0	790 ± 28	1.2823
not qqHZZ	46.67 ± 6.83	738 ± 27	0 ± 0	644 ± 25	1.2343
not vvHZZ	46.67 ± 6.83	738 ± 27	0 ± 0	644 ± 25	1.2343 ± 0.3094

Table 36: Event selection results for v1.0, mmHqqvv

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	6844.99±82.73	1140511±1067	801811977±28316	107203890±10353	1512
Pre – selection	238.62 ± 15.45	30494 ± 174	480828±693	515424±717	
Signal or not	226.71±15.06	30268 ± 173	480828±693	515424±717	
$M_{dimuon} < M_{dijet}$	101.44 ± 10.07	27436 ± 165	58876 ± 242	358431±598	0.1521
N(pfo)	97.54 ± 9.88	20843 ± 144	364 ± 19	231698 ± 481	0.1939
$M_{missing}$	79.06 ± 8.89	769 ± 27	37 ± 6	2083 ± 45	1.4508
M_{dimuon}	78.38 ± 8.85	707 ± 26	7 ±2	1732 ± 41	1.5596
M_{dijet}	68.04 ± 8.25	576 ± 24	0 ± 0	830 ± 28	1.7719
$*cos \theta$	68.04 ± 8.25	576 ± 24	0 ± 0	830 ± 28	1.7719
$cos \theta_{visible}$	64.55 ± 8.03	552 ± 23	0 ± 0	452 ± 21	1.9743
$Angle_{\mu j}$	59.83 ± 7.73	239 ± 15	0 ± 0	70 ± 8	3.1136
M^{rec}_{dimuon}	58.8 ± 7.67	214 ± 14	0 ± 0	66 ±8	3.1886
$*M_{dijet}^{rec}$	58.8 ± 7.67	214 ± 14	0 ± 0	66 ± 8	3.1886
$M_{visible}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
$*P_{visible}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
$*P_{T_{visible}}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
$*E_{leading jet}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
$*P_{T_{leading jet}}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
$*E_{sub-leading jet}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
$*P_{T_{sub-leading jet}}$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
not $\mu^+\mu^-HZZ$	58.11 ± 7.62	175 ± 13	0 ± 0	54 ±7	3.4226
not qqHZZ	50.72 ±7.12	130 ± 11	0 ±0	43 ±6	3.3888±0.4847

Table 37: Event selection results for v1.0, vvHqqmm

Cut	Signal	ZH Background	2f Background	4f Background	$\frac{S}{\sqrt{S+B}}$
Expected	20254.08±142.32	1140511±1067	801811977±28316	107203890±10353	
Pre – selection	826.57 ± 28.75	30494 ± 174	480828±693	515424±717	
Signal or not	203.35 ± 14.26	30291 ± 174	480828±693	515424±717	
$M_{missing} < M_{dimuon}$	108.36 ± 10.41	27112 ± 164	462222±679	474655 ± 688	0.1104
N(pfo)	103.09 ± 10.15	19686 ± 140	16961 ± 130	313555±559	0.1742
M_{dijet}	97.83 ± 9.89	4453 ± 66	37 ± 6	250524 ± 500	0.1937
M_{dimuon}	83.85 ± 9.16	3393 ± 58	14 ± 3	174150±417	0.1989
$M_{missing}$	64.81 ± 8.05	1923 ± 43	7 ± 2	11132 ± 105	0.5657
$*cos \theta$	64.81 ± 8.05	1923 ± 43	7 ± 2	11132 ± 105	0.5657
$cos \theta_{visible}$	60.76 ± 7.8	1761 ± 41	0 ± 0	6827 ± 82	0.6533
$Angle_{\mu j}$	53.27 ± 7.3	1181 ± 34	0 ± 0	1264 ± 35	1.0655
M_{dimuon}^{rec}	51.24 ± 7.16	1178 ± 34	0 ± 0	661 ± 25	1.1786
M_{dijet}^{rec}	48.41 ± 6.96	935 ± 30	0 ± 0	534 ± 23	1.2423
$M_{visible}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
$*P_{visible}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
$*P_{T_{visible}}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
$*E_{leading jet}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
$*P_{T_{leading jet}}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
$*E_{sub-leading jet}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
$*P_{T_{sub-leading jet}}$	45.37 ± 6.74	742 ± 27	0 ± 0	464 ± 21	1.2819
not $\mu^+\mu^-HZZ$	39.5 ± 6.28	270 ± 16	0 ± 0	345 ± 18	1.5427
not vvHZZ	39.5 ±6.28	270 ± 16	0 ± 0	345 ±18	1.5427±0.3489

Table 38: Event selection results for v1.0, qqHmmvv

For $\mu\mu\nu\nu qq$: 2.640% ± 0.479% For $\mu\mu qq\nu\nu$: 2.638% ± 1.721% For $\nu\nu\mu\mu qq$: 2.640% ± 0.352% For $\nu\nu qq\mu\mu$: 2.640% ± 0.735% For $qq\nu\nu\mu\mu$: 2.640% ± 1.432% For $qq\mu\mu\nu\nu$: 2.640% ± 1.677%

Combine results of Branch ratio of Higgs to ZZ is:

 $2.640\% \pm 0.255\%$

372 References

- ³⁷³ [1] ATLAS Collaboration, Phys. Lett. B, **716**: 1-29 (2012), arXiv:1207.7214[hep-ex]
- ³⁷⁴ [2] CMS Collaboration, Phys. Lett. B, **716**: 30-61 (2012), arXiv:1207.7235[hep-ex]
- [3] ATLAS Collaboration, Phys. Lett. B, 726: 88-119 (2013), arXiv:1307.1427[hep-ex]
- ³⁷⁶ [4] ATLAS Collaboration, Phys. Lett. B, **726**: 120-144 (2013), arXiv:1307.1432[hep-ex]
- ³⁷⁷ [5] CMS Collaboration, JHEP, **1306**: 081 (2013), arXiv:1303.4571[hep-ex]
- ³⁷⁸ [6] CMS Collaboration, Nature Phys., **10**: (2014), arXiv:1401.6527[hep-ex]
- ³⁷⁹ [7] CMS Collaboration, Phys. Rev. D, **92**: 012004 (2015), arXiv:1411.3441[hep-ex]
- ³⁸⁰ [8] ATLAS and CMS Collaborations, JHEP, **08**: 045 (2016), arXiv:1606.02266[hep-ex]
- [9] ATLAS and CMS Collaborations, Phys. Rev. Lett., **114**: 191803 (2015), arXiv:1503.07589[hep-ex]
- [10] ATLAS Collaboration, Projections for measurements of Higgs boson signal strength and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014)
 http://cds.cern.ch/record/1956710
- [11] CMS Collaboration, Projected Performance of an Upgraded CMS Detector at the
 LHC and HL-LHC: Contribution to the Snowmass Process, arXiv:1307.7135[hep-ex].
 http://www.slac.stanford.edu/econf/C1307292/docs/submittedArxivFiles/1307.7135.pdf