Weekly Updates

Ryuta

Table: Cut condition

Table 1 Overview of the requirements applied for each Higgs decay channels, further explanations should be given here.

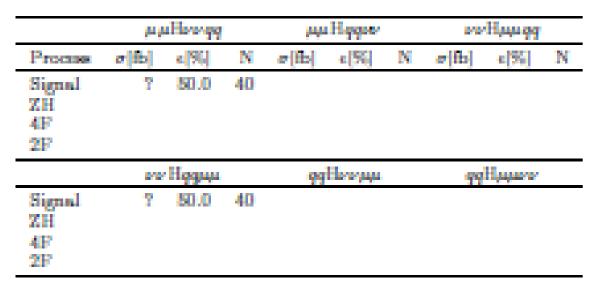

Pro-selections						
N(l) = 2, where leptons(l) should pass the isolation criteria						
$N(\mu^{+}) = 1$, $N(\mu^{-}) = 1$ with $E(\mu^{\pm}) > 3$ GeV						
N(jet) = 2						
μμΗνυησ	μμHqque	υν Ημμιση				
$80 \text{ GeV} < M_{max} < 100 \text{ GeV}$	$80 \text{ GeV} < M_{nn} < 100 \text{ GeV}$	$80 \text{ GeV} < M_{_{HH}} < 100 \text{ GeV}$				
75 GeV < M _{II} < 110 GeV		75 GeV < M ₁₁ < 110 GeV				
75 GeV < M _{mins.} < 110 GeV		$75 \text{ GeV} < M_{\text{miss.}} < 110 \text{ GeV}$				
$110 \text{ GeV} < M_{p,p}^{recoil} < 140 \text{ GeV}$	$110 \text{ GeV} < M_{pp}^{record} < 140 \text{ GeV}$	$110 \text{ GeV} < M_{vis.} < 140 \text{ GeV}$				
$20 < N_{PPO} < 90$	$20 < N_{PPO} < 90$	$20 < N_{PPO} < 90$				
$ \cos \theta_{\rm vis.} < 0.95$	$ \cos \theta_{\rm cir.} < 0.98$	$ \cos \theta_{\rm cis.} < 0.98$				
$0^{\circ} < \Delta \phi_{ZZ} < 180^{\circ}$	$0^{\circ} < \Delta \phi_{ZZ} < 180^{\circ}$	$0^{\circ} < \Delta \phi_{ZZ} < 180^{\circ}$				
$M_{II}^{count} - M^{higgs} > 3 \text{ GeV}$	$M_B^{record} - M^{higgs} > 3 \text{ GeV}$	$ M_B^{\rm recoil} - M^{\rm biggs} > 3 \text{GeV}$				
<i>оо</i> Н <i>ади</i> µ	qqНо <i>ози</i> и	qqHuu vo				
$80 \text{ GeV} < M_{\mu\mu} < 100 \text{ GeV}$	$80 \text{ GeV} < M_{_{BB}} < 100 \text{ GeV}$	$80 \text{ GeV} < M_{\mu\mu} < 100 \text{ GeV}$				
75 GeV < M _H < 110 GeV	75 GeV < M ₁₁ < 110 GeV	75 GeV < M ₂₁ < 110 GeV				
75 GeV < M _{miss.} < 110 GeV	$75 \text{ GeV} < M_{\text{miss.}} < 110 \text{ GeV}$	$78 \text{ GeV} < M_{\text{miss.}} < 110 \text{ GeV}$				
$110 \text{ GeV} < M_{vis.} < 140 \text{ GeV}$	110 GeV < M _{ii} < 140 GeV	$110 \text{ GeV} < M_{\odot}^{\text{recent1}} < 140 \text{ GeV}$				
$20 < N_{PPO} < 90$	$20 < N_{PPO} < 90$	$20 < N_{PPO} < 90$				
$ \cos \theta_{\rm vis.} < 0.95$	$\cos \theta_{\rm vis.} < 0.95$	$\cos \theta_{\rm vis.} < 0.98$				
$0^{\circ} < \Delta \phi zz < 180^{\circ}$	$0^{\circ} < \Delta \phi zz < 180^{\circ}$	$0^{\circ} < \Delta \phi zz < 180^{\circ}$				
$M_{\rm H}^{\rm recoil} - M^{\rm higgs} > 3 {\rm GeV}$	$\left \frac{M_{\rm H}^{\rm record} - M^{\rm higgs}}{\rm H} \right > 3 {\rm ~GeV}$	$ M_{\rm H}^{\rm recoil} - M^{\rm biggs} > 3 {\rm GeV}$				

Table: analysis efficiency & remaining number of events

Table 2 Summary of event selection.

From ILC paper(arXiv)

Dunnan	-[C]	o [0/1	o [0/1	
Process	$\sigma[fb]$	ϵ_{pres} [%]	ϵ_{total} [%]	evt s _{final}
$H \rightarrow$ other Higgs decays	374.3	64.6	18.0	14534
$e^+e^-\! o\! qar q$	2948.9	2.0	6.10^{-4}	38
$e^+e^-\! o\! qar q vv$	1317.5	45.8	0.3	7664
$e^+e^-\! o\! qar q l u$	5561.1	26.3	0.1	12623
$e^+e^- \! o \! qar{q}ll$	3319.6	4.0	0.1	135
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	546.5	3.3	7.10^{-2}	77
$e^+e^- \rightarrow q\bar{q}qqvv$	71.5	2.2	0.3	358
$e^+e^- \! o \! qar{q}qar{q}lv$	106.9	1.1	0.04	93
$e^+e^- \rightarrow q\bar{q}q\bar{q}ll$	169.3	1.8	0.05	172
$e^+e^- \rightarrow q\bar{q}q\bar{q}e$ (EPA)	54.2	2.1	0.15	161
$e^+e^- \rightarrow q\bar{q}q\bar{q}e$ (BS)	262.5	3.3	$< 10^{-4}$	-
$e^+e^- \rightarrow q\bar{q}q\bar{q}e$ (EPA)	54.2	2.2	0.14	146
$e^+e^- \rightarrow q\bar{q}q\bar{q}e$ (BS)	262.3	3.2	8.10^{-4}	4
$e^{\pm}\gamma \rightarrow q\bar{q}q\bar{q}v$ (EPA)	287.8	2.0	0.05	306

I'm still considering which one is ... (left one includes the list of background channels that might be better)

Distribution as an example

- Taking mmHZZ channel as an example figures
- raw(after pre-selection) or during cut stage?

Here, list is (S+B):

- $M\mu\mu$ (invariant mass)
- Mμμ (recoil mass)
- (- 2D, dijet-missing mass)
- Npfo
- $-\cos(\theta)$ vis.

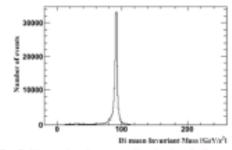


Fig. 2 Dimuon invariant mass distrubution. S+B

References

 Author, Article title, Journal, Volume, page numbers (year)

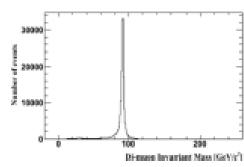


Fig. 4 Npfo distribution. S+B

Fig. 8 Cos theta visible distribution. S+B

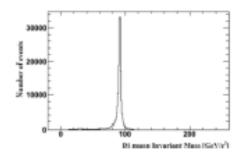


Fig. 3 Dimuon recoil mass distrubution. S+ B

2. Author, Book title, page numbers. Publisher, place (year)

negative value of missing mass is an issue. (=need explanation)

Distribution with the fitting

- How about the ZH bg.
 - merge into bg?

probably, need to mention(calculate) the N(HZZ, but not the signal)

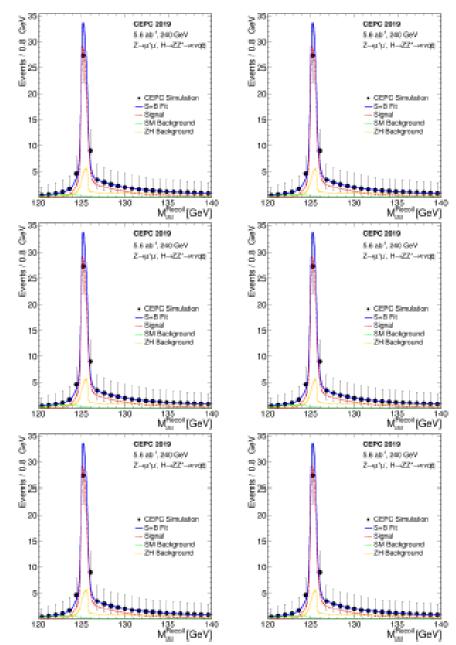


Fig. 6 Recoil mass distributions, further explanations should be given here.

Table: fitting result

Table 3 Statistical uncertainties on the product of the ZH cross section and the branching ratio, further explanations should be given here.

Channel		$\frac{A(s \cdot HR)}{(s \cdot HR)}$ [%]	
$Z\rightarrow \mu^{+}\mu^{-}$	$H \rightarrow Z Z^* \rightarrow \nu \nu \nu q q$	10.0	
$Z\rightarrow \mu^{+}\mu^{-}$	$H \rightarrow Z Z^{\bullet} \rightarrow g q \nu \sigma$	10.0	
$Z \rightarrow \nu \nu$	$H \rightarrow Z Z^{\bullet} \rightarrow \mu^{+}\mu^{-}qc$	10.0	
$Z\rightarrow \nu \nu$	$H \rightarrow Z Z^{\bullet} \rightarrow qqu^{+}\mu^{-}$	10.0	
$Z\rightarrow qq$	$H \rightarrow Z Z^{\bullet} \rightarrow \mu^{+}\mu^{-}\nu i$	2 10.0	
$Z \rightarrow qq$	$H\rightarrow ZZ^{\bullet}\rightarrow \nu\bar{\nu}\mu^{+}\mu^{-}$	10.0	
Combined		10.0	

Others:

- how about the "signal or not"?