ANALYSIS UPDATES

CC \& μ TPC: incident angle

- L1 performs systematically better than L2, expecially if the beam incident angle is larger than 15°.
$-\mu \mathrm{TPC}$ behavior in L 1 is flat between 10° and 30° while in L 2 doesn't. Might it be due to the tracking system?
- No significant difference are evaluated between the top and the bottom part of L1 and L2.

What are the systematic to include in these results and why L2 is always worsen than L1?

TOY MC - COSMIC SETUP

This is a simulation of the cosmic setup for L1 and L2. The purpose of this toy is to evaluate the contribution of the tracking system as a function of the incident angle.

Cosmic particle with a path orthogonal to the ground plane are shooted on L1 and L2. A shift is used to hit the setup with tracks having an incident angle w.r.t. the cylinder surface between 0 and 90° on L1 and between 0 and 40° on L2.

Up to now, only positive X positions are considered.
Position is evaluated with CC alogrithm only.

TOY MC - Cosmic setup

1. Generate a random number from 0° to 40° as the L 2 incident angle
2. Evaluate the L1 incident angle from geometry: L1_angle $=\operatorname{asin}\left(\mathrm{R} 2 / \mathrm{R} 1 * \sin \left(\mathrm{~L} 2 _\right.\right.$angle $)$)
3. Smear the position on the L1up, L1down, L2up, L2down as a function of the expected performance from experimental data with planar triple-GEM
4. Choose 3 points and fit them with a line, then measure the residual of the forth point
5. Repeat action 1-4 for a arge sample
6. Analyze the residual distrubution with a Gaussian fit
7. Plot the mean and the sigma as a function of the incident angle on the test detector
8. Evaluate the tracking contribution with a squared substraction of the expected resolution for each incident angle

TOY MC - Cosmic setup

Repeat the above routine many times for different incident angle for L2

> Mean and sigma of the residual distribution is studied as a function of the incident angle

TOY MC - Sigma simulation vs experimental

sigma in simulation

sigma in experimental data

1. The sigma measured contains the contribution of the tracking system and the detector itself
2. Simulation underestimate the experimantal data, expecially on L2
3. The shape of the simulated and experimental data is different too
4. The resolution of the planar GEM is not the best one to simulate the CGEM

new TOY MC - CC resolution of CGEM

1. The performance of the CGEM is measured by real data is very different from the one measured by the cosmic setup
2. I try a differnet function to reproduce the resolution of the CC : a parabola instead of a line
3. The parabola for the simulation of the L1 resolution has been properly tuned to match the data of L1
4. The same values are used also for L2 and the simulated result (next slide) are in agreement with the experiement (previous slide)

new TOY MC - Tracking system contribution

sigma in simulation

1. Using the sigma value as a function of the incident angle measured in the previous slide, it is possible to measure the contribution of the tracking system.
2. The sigma of the Guassian is determined by the intrinsic resolution of the detector and the contribution of the tracking system, then the effect of the tracking system can be extracted with a squared subtraction:
$\operatorname{sqrt}\left((\text { residual sigma })^{\wedge} 2-(\text { CC planar resolution })^{\wedge} 2\right)$
3. The result has to be understood. The contribution of the tracking system seems to be very small on L1. It is important to understand what is the role of the mean value of the residual and how it could worsen the tracking system.

TOY MC - Conclusion

1. A contribution of the tracking system of about $100-150 \mu \mathrm{~m}$ for L 1 and $200-1600 \mu \mathrm{~m}$ for L 2 has been evaluated as a function of the incident angle
2. The CC resolution from the planar GEM is not enough to describe the data
3. A parabolic shape of the CC resolution vs incident angle seems to describe better the data
4. The resolution on L2 is systematically worsen thant L1

Ok, we can go back to the L1 performance

CC and TPC vs angle (L1top)

Until μ TPC will to be better than CC, every merge studies is useless and they will not be implemented in CGEMBOSS
--> Let's concentrate to the $\mu \mathrm{TPC}$

μ TPC present status in CGEM-IT

$$
\begin{aligned}
t_{\text {hit }}^{\prime} & =t_{\text {hit }}-t_{0} \\
z_{\text {hit }} & =t_{\text {hit }}^{\prime} \cdot v_{\text {drift }} \\
x_{\mu \mathrm{TPC}} & =\frac{\text { gap } / 2-b}{a}
\end{aligned}
$$

μ TPC events are recostructed with error bars. Two methods are used in CGEMBOSS but in the present situation no differences show up.

μ TPC present status: time reference

$$
\begin{aligned}
t_{h i t}^{\prime} & =t_{h i t}-t_{0} \\
z_{h i t} & =t_{h i t}^{\prime} \cdot v_{d r i f t} \\
x_{\mu \mathrm{TPC}} & =\frac{\text { gap } / 2-b}{a}
\end{aligned}
$$

Double peak is observed in the μ TPC residual distribution. This problem is due to the time reference.

μ TPC present status: time reference

Double peak is observed in the μ TPC residual distribution. This problem is due to the time reference.

Positive position shift on one side and negative position to the opposite side.

A wrong time reference can shift the μ TPC points (from red stards to blue dots) then a shift in the $\mu \mathrm{TPC}$ positions.

Positive angle shift on one side, negative angle to the other one.

Let's select only negative expected position

$\mu \mathrm{TPC}$: time reference studies - L1 top

μ TPC: time width studies - L1top

$\mu \mathrm{TPC}$: time error studies - L1 top

5 ns err

10 ns err

μ TPC studies

This is the behavior as a function of the incident angle and cluster size

$\mu \mathrm{TPC}$ conclusion

1. Optimization of the $\mu \mathrm{TPC}$ variables are needed
2. Preliminary studies on the time reference shows important effects
3. Minor effects are observed in the drift velocity scan and in the error size scan
4. More studies will be needed because the actual results could not improve the $\mu \mathrm{TPC}$ below $500 \mu \mathrm{~m}$

LUT results

LUT: results

The variables list is:

GENERAL SETTING runs
high voltage values energy mode

GEOMETRY
ROC id, FEB id, TIGER id
strip, side, layer
CALIBRATION
qdc slope, constant and saturation value

```
THRESHOLD
voltage thr. E and T branches
voltage baseline \(E\) and \(T\) branches
charge cut (fC) E and T branches
effective charge cut ( fC ) on the channel
NOISE (out of time)
rate \((\mathrm{Hz})\), mean charge (fC)
SIGNAL (in-time)
rate ( Hz ), mean chare ( fC ), max charge ( fC ) leading and falling time (ns) quality
```

--> New package to extract the variables: ReadCosmicRayData-00-00-21

threshold [fC]

rising time [ns]

falling time [ns]

LUT: Time reference

LUT - Conclusion

1. Information channel by channel can be used to improve the resolution of the detector such us the time-walk effect
2. Moreover other information such us time reference could be used for futher studies
3. Is the calibration team available to develope the corrections channel by channel?

All - Conclusion

1. L1 detector is the one with the smaller contribution of the tracking system
2. uTPC optimization is feasible but now we need to implement it chip by chip or channel by channel
3. LUT can provide threshold value and it could be used to perform the time-walk correction
