Effective Theory Analysis of Electroweak Data

Yuhao Wang

Nanjing University

Why are we here?

- Standard Model Effective Field Theory (SMEFT) is an important method to deal with the small deviation from SM
 - Help finding New Physics Beyond Standard Model
 - Constraining the parameters of the new model
- Electroweak measurement (especially with on-shell Z and W boson production) is among the most accurately measured observables
- EFT Analysis on Electroweak Data has been performed many times, What's new about our study?
 - We introduce the top coupling through loops
 - A more complete Electroweak dataset is used

SMEFT

 SMEFT can describe new particles' contribution by introducing new degrees of freedom (higher-dimensional operators constructed out of only SM fields)

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_{d5} + \frac{1}{\Lambda^2}\mathcal{L}_{d6} + \cdots$$

- Λ is the energy scale of new interaction (set as 1TeV in our study)
- SM Lagrangian are dimension 4. Assuming lepton number conservation, dimension 6 operators has the NLO contribution to the observables

Our EFT Lagrangian

• We can impose $U(2)_u \otimes U(2)_d \otimes U(2)_q \otimes U(3)_l \otimes U(3)_e$ on Warsaw basis and set the mass of leptons and first two generation quarks as 0

 $\mathcal{L}_{dim6} = \frac{c_{t\varphi}}{\Lambda^2} Q_{t\varphi}^{33} + \frac{c_{b\varphi}}{\Lambda^2} Q_{d\varphi}^{33} + \frac{c_W}{\Lambda^2} Q_W + \frac{c_{\varphi D}}{\Lambda^2} Q_{\varphi D} + \Sigma_{i=1}^3 \frac{c_{\varphi l}^{(1)}}{\Lambda^2} Q_{\varphi l}^{ii(1)} + \Sigma_{i=1}^3 \frac{c_{\varphi l}^{(3)}}{\Lambda^2} Q_{\varphi l}^{ii(3)} + \Sigma_{i=1}^3 \frac{c_{\varphi e}}{\Lambda^2} Q_{\varphi e}^{ii} + \Sigma_{i=1}^2 \frac{c_{\varphi q}}{\Lambda^2} Q_{\varphi q}^{ii} + \Sigma_{i=1}^2 \frac{c_{\varphi q}}{\Lambda^2} Q_{\varphi q}^{ii(1)} + \Sigma_{i=1}^3 \frac{c_{\varphi q}}{\Lambda^2} Q_{\varphi q}^{ii(3)} + \Sigma_{i=1}^3 \frac{c_{\varphi q}}{\Lambda^2} Q_{\varphi q}^{ii(3)} + \Sigma_{i=1}^3 \frac{c_{\varphi q}}{\Lambda^2} Q_{\varphi q}^{ii(3)} + \Sigma_{i=1}^2 \frac{c_{\varphi q}}{\Lambda^2} Q_{\varphi q}^{ii} + \Sigma_{i=1}^3 \frac{c_{\varphi q}}{\Lambda^2} Q_{q}^{ii} +$

• Totally, there are 39 dimension-6 operators (O_i)

$$\mathcal{L}_{dim6} = \sum_{i} \frac{c_i}{\Lambda^2} O_i = \sum_{i} \theta_i O_i$$

Where c_i is called Wilson coefficients

EFT Operators

• How EFT operators contribute to the electroweak process? e.g. $O_{tW} = O_{uW}^{33} = (\bar{q}_3 \sigma^{\mu\nu} u_3) \varphi W_{\mu\nu}^I$: 4 fermion operator 1. Tree-level contribution Top loops Vertex operator 200000 **1**100 150 200 25050 2. Loop-level contribution Tristan ee>ff,WW Z pole APV, DIS, @ LEP2 @ LEP/SLC weak charge hmm w W W pole @Tevatron, (only consider W boson in the example) LEP2, LHC

EFT Operators

• O_{tW} on $\Gamma_{W \to t\bar{b}}$ $\mathcal{M} = \mathcal{M}_{SM} + \mathcal{M}_{dim6}$ W $\sim \sim \sim$

The contribution from different operators can be combined linearly

$$\begin{split} &\Gamma_{W \to t \, \overline{b}} \propto |\mathcal{M}_{SM} + \mathcal{M}_{dim6}|^2 \\ &\propto \mathcal{M}_{SM}^2 + 2\mathcal{M}_{SM} \cdot \mathcal{M}_{dim6} + \mathcal{M}_{dim6}^2 \\ &\downarrow \qquad \qquad \downarrow \\ &\Gamma_{SM} \qquad \text{LO dim6 contribution High-order contribution} \end{split}$$

W

1000000

+

Process

7

W pair production

• Main feynman diagram:

• On-shell or Off-shell?

CC03 diagram

- In experiment, W can not be probed directly \rightarrow it could be off-shell.
- W- angular distribution is one of the observables → W should be the final state, need to be on-shell.
- If we simulate $e^+ e^- \rightarrow W^+ W^- \rightarrow 4f$ with W off-shell, which are subset diagrams of process $e^+ e^- \rightarrow 4f$, it will lead to the break of gauge invariance.
- As a result, we will simulate $e^+ e^- \rightarrow W^+ W^- \rightarrow l v q \bar{q}$ with W on-shell!

W pair production: W- angular distribution

- Angular Distribution: $d\sigma_{WW}/dcos\theta_W^-$, where θ_W^- is the polar angle between W- and beam. (divided into 10 bins)
- Decay Channel: $e^+ e^- \rightarrow W^- W^+ \rightarrow l \ v \ q \ \overline{q} \ (l = e, \mu) \text{ BR~30\%}$
- Angular cut: the angle between the lepton and beam >20 degree
 - Due to the large background in the small angle region at LEP, an angular cut is applied. Additionally, it greatly reduce the difference between 4*f* process and CC03 diagrams.
 - In the experiment, the overall cut efficiency is around 92%, which corresponds to our SM simulation.
 - The cut efficiency in every bin is different.
 - The cut efficiency in every dim6 operators' contribution is different.

W- angular distribution: Angular cut

• cut efficiency of some New Physics operators' contribution:

χ^2 Fit

• Introduce χ^2 to measure the goodness of fitting $\chi^2 = \left(\vec{y} - A\vec{\theta}\right)^T V^{-1}(\vec{y} - A\vec{\theta})$

 \vec{y} is the difference between the experimental value and SM prediction of observables, A_{ij} is the i-th operator's contribution to j-th observable , V is the covariance matrix of observables

• Set $\nabla \chi^2 = 0$, we can get the Least Square estimator θ and its covariance matrix U:

$$\hat{\vec{\theta}} = (A^T V^{-1} A)^{-1} A^T V^{-1} \vec{y} = B \vec{y}$$
$$U = B V B^T = (A^T V^{-1} A)^{-1}$$

χ^2 Fit: Result

- Marginalized Bound (1σ) :
 - Floating all the operator together
 - Altogether, there are 436 observables and 34 operators with non-zero contribution
 - At the best fit point, $\chi^2 = 430.212$
 - At the zero point (which stands for no new physics), $\chi^2 \chi^2_{min} = 54.7962$, that means it can be included within 2.47 σ region.

cHQM:49.8513	+-22.6275
cHQP:0.731309	+-0.499049
cpt :10.5563	+-7.42657
cHtb:-464.448	+-321.925
ctW :-3.15425	+-11.6353
cbW :-9.14372	+-5.51773
ctB :85.9912	+-42.1346
cpDC:-3.30731	+-2.36376
cpl3:1.32176	+-0.476584
cpWB:0.984566	+-0.95908
cllp:0.0702804	+-0.122517
cll :0.0190819	+-0.126997
cpl :0.59523	+-0.631228
cle :0.0515366	+-0.0380569
cpe :1.15044	+-1.26211
cpq :-0.163339	+-0.248193
cpq3:1.31961	+-0.484772
cpu :-0.662563	+-0.858626
cpd :0.342007	+-0.86693
clq1:8.08432	+-2.67817
clq3:3.20932	+-1.09643
clu :-2.37828	+-0.779431
cld :-14.3654	+-4.84658
ceq :10.0286	+-3.33585
ceu :-7.7074	+-2.52024
ced :-13.0978	+-4.32221
cee :0.0467404	+-0.0575042
cpb :0.598353	+-0.608004
clQP:-2.52211	+-1.22993
clb :-4.73505	+-2.95697
ceqt:-2.3986	+-1.40424
ceb :6.24316	+-3.06574
cWWW:-3.36584	+-1.21611
cbB :-7.29405	+-3.49446

χ^2 Fit: Result

- Individual Bound (1σ) :
 - Floating one operator at one time
 - Most of the operators contain the zero point within the 1σ region

cHQM:-0.23668 +-0.194806 cHQP:0.0156382 +-0.0196963 cpt :0.194587 +-0.170321 cHtb:-11.2626 +-8.88384 ctW :-0.154758 +-0.474507 cbW :0.117362 +-0.129101 ctB :0.234797 +-0.330889 cpDC:-0.00929742+-0.00735525 cpl3:-0.0035438+-0.00346937 cpWB:-0.00220751+-0.00257292 cllp:0.00575134+-0.00556312 cll :0.0131002 +-0.0154819 cpl :0.00194129+-0.00421061 cle :0.0095601 +-0.0181492 cpe :-0.00206655+-0.00539786 cpg :-0.0222767+-0.0294185 cpq3:0.00421476+-0.00754999 cpu :0.0135304 +-0.0334877 cpd :-0.0581777+-0.0416187 clq1:0.013926 +-0.0322003 clq3:0.0351024 +-0.0137771 clu :-0.0722251+-0.054454 cld :0.0856226 +-0.0481595 ceg :-0.0591577+-0.0307013 ceu :-0.0780053+-0.033423 ced :0.0066563 +-0.0414798 cee :0.0070912 +-0.0165346 cpb :-0.164183 +-0.106388 clQP:-0.0264519+-0.0372579 clb :0.0800751 +-0.205033 ceqt:-0.00673712+-0.102396 ceb :-0.0536198+-0.0916119 cWWW:-0.148192 +-0.568469 cbB :-0.110743 +-0.114168

χ^2 Fit: Result

- Two operators fit (cHQP & cpWB):
 - They are proportional to the Peskin– Takeuchi parameters (T & S), which are important in electroweak fit.
 - Fitting Result (1σ):

S:0.0698+-0.1333 T:0.0941+-0.1153

- Compared with PDG result, we share a similar shape, they have better constraint due to the Higgs data.
- Compared with other similar study with Electroweak Data, we have a bit tighter result due to more complete data(ee>II differential xsec)

Thank you!