Lectures on machine learning

Yu Zhang

IHEP, Beijing

March 30, 2020

Several words before start

- Xiaohu gave a set ot lectures about statistic several years ago (Link) before he left. Now it is my turn to present ML!
- Machine learning is not a one-day lesson.
- This tutorial could be weekly tutorial before I leave for a new position.
- This set to tutorial will include algorithm, code of implementation and application in various area.

Outline

- What is machine learning
- Typical method of machine learning
 - Top 10 algorithms in data mining and TMVA
 - Deep learning
- 3 Examples
 - kNN
 - Decision Tree
 - Neural Network
- 4 Tools and packages
 - Python package and platform
- 5 Applications
- 6 Remarks

What is machine learning(twiki)

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead.

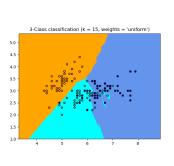
The type of machine learning:

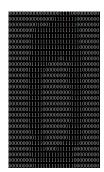
- Supervised learning
- Un-supervised learnning
- Re-inforcement learning

How ML is used in HEP

- Classification:
 - Particle identification
 - Flavor tagging
 - Event classification
- Regression:
 - Energy calibration
 - Reconstruction : pattern recognition

Typical method of machine learning

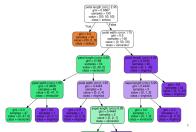

- Top 10 algorithms in data mining(Link)
- C4.5
- K-means
- Suppport Vector Machine(SVM)
- Apriori
- EM
- What is in TMVA?
 - Cut, Likelihood, kNN, Linear Discrminant
 - FDA(Function Discriminant Analysis)
 - Neural Network, SVM, BDT
- Deep learning: RNN, CNN etc


- PageRank
- AdaBoost
- kNN
- Naive Bayes
- Classfication and Regression Tree(CART)

k-nearest neighboring

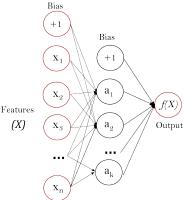
Algorithm

- Given the labeled dataset.
- Calculte the distance between the test point and the labeled event.
- Select the k-nearest event.
- Calculate the frequent label and it is assigned to the test point.
- Parameters : K



Decision Tree

Algorithm


- Give a dataset with \vec{X}
- From each node, seperate the sample to two parts by cutting on the variables, to maximize the significance(entropy, gini-index)
- ending node :
 - Number(Fraction) of events is smaller enough
 - The improvement of significance is smaller enough
 - Maximum number of nodes or depth
- Check the over-training
- Parameters: type of figure of merit, criteria of ending

Neural Network—Multi-Layer Perceptron

Algorithm

- Give a dataset with character \vec{X} (n-dimentional vector)
- Hidden layer : $\vec{\mathbf{a}} = f(\mathbf{W}_1 \vec{\mathbf{X}})$, f(x) is propagation function
- Output : $y = \mathbf{W}_2 \vec{\mathbf{a}}$
- Parameters: Weight Matrix, number of hidden layers, f(x)

Tools and packages

- Python packages
 - Scikit-learn(Link), Keras(Link), Theano
- Platform
 - Tensorflow(Google)(Link)
 - PyTorch(Facebook)(Link)
- Example codes from Wisconsin
 - DNN: https://github.com/laserkaplan/ttHyyML
 - XGBoost : https : //gitlab.cern.ch/wiscatlas/ttHyyML

Applications

- Speech recognition
- Handwriting recognition
- Natural Language Processing(NLP)
- Computer vision : face recognition, medical diagnosis
- Online advertising: I also know HEP PhD is doing electronic business

Remarks

- How to learn machine learning
 - Do you want to be a "man of parameter-tunning"

- Want to go to industry?
 - I talked to a HEP PhD from USTC working in HuaWei and he already recruited two of my undergraduate classmates who are also HEP PhD.
 - You need to be familiar with:
 - the detail of tranditional ML algorithms
 - related python packages
 - deep learning
 - one muture platform Tensorflow or PyTorch

To be continued

- Let's start with BDT next week.
- It will includes:
 - BDTA, BDTG, BDTB, BDTD, BDTF, XGBoost BDT
 - algorithms, implementation and comparison
- See you next time!