On the energy-dependent morphology and spectra around Geminga and Monogem with LHAASO-KM2A

Reporter: Yingying Guo²

Collaborator: Yi Zhang^{2, 1}, Qiang Yuan², Hongbo Hu¹, Ensheng Chen¹, Xiaojun Bi¹

- 1. Institute of High Energy Physics(IHEP)
 - 2. Purple Mountain Observatory

The discovery of inefficient diffusion

How does diffusion depend on energy?
 The shape of injected electron spectrum?

Abeysekara et al., Science 358, 911–914 (2017) 17 November 2017

Content

- Data introduction
- Background estimation (equi-zenith angle method)
- Significance of Geminga and Monogem
- Morphology evolution with energy measured by
 - (1) 1/2KM2A
 - (2)3/4KM2A
 - (3) 1/2KM2A and 3/4KM2A
- Source spectra
- Implication on electron spectrum

Data introduction

≻Duration:

- ¹/₂ KM2A: 27 Dec. 2019 30 Nov. 2020
- ³/₄ KM2A: 1 Dec. 2020 19 Jul. 2021

➢ Data selection criteria are the same as Crab(zenith angle is 10-50deg).

F. Aharonian et al 2021 Chinese Phys. C 45 025002

Background estimation

equi-zenith angle method

Mask region: Galactic plane and sources in TeVCat Mask radius for Geminga and Monogem is 15 degree.

Significance map

Morphology analysis method

• Morphology model:

$$f(\theta) = \frac{A}{\theta_d(\theta + 0.085\theta_d)} \exp[-1.54(\theta/\theta_d)^{1.52}],$$

Diffusion property is the same around two source, ie. $\theta_{d,geminga} \times Dist_{geminga} = \theta_{d,monogem} \times Dist_{monogem}$

• Detected signal distribution

 $N^{\text{source}}(\theta) = f(\theta_d) \bigotimes PSF$

Likelihood Analysis

The signals from Geminga and Monogem, respectively

The PSF around sources

The PSFs are obtained from Geminga simulation.

Region of Interest—exclude known sources

The white circles are the exclusion domain: the Galactic TeV source with a radius of 2 degrees. The white circles are the AGNs: the redshifts of which are all greater than 0.15 and do not need to be deducted

The fitted range is a 15-degree circles centered on both sources.

The photon energy distribution of both sources

- ✓ The spectra of both source are considered.
- The pivot energy of γ-rays are:15,21,31,46,73,117TeV

The Morphology results by 1/2 KM2A

Morphology of Gemingna by ³/₄ KM2A

Morphology of Monogem by 3/4 KM2A

The energy-dependent morphology

TABLE I. Diffusion coefficients in different energy bins. The E_{γ} is the median energy of each analysis bin, E_e is the parent electron or positron mean energy, θ_d is the typical diffusion extension of Geminga, the extension of PSR B0656+14 equals to $\theta_d \times 250/288$ due that the distance of Geminga (PSR B0656+14) is 250 (280) parseconds.

$E_{\gamma}(TeV)$	$\theta_d(^\circ) \frac{3}{4} \text{KM2A}$	TS	$\theta_d(^\circ) \frac{1}{2} \text{KM2A}$	TS
15	$7.44^{+1.09}_{-0.94}$	185.7	$6.67^{+1.2}_{-1.02}$	127.8
21	$7.18^{+0.89}_{-0.78}$	267.3	$6.86^{+0.91}_{-0.79}$	217.3
31	$7.86^{+0.66}_{-0.6}$	662.5	$7.5^{+0.68}_{-0.61}$	544.7
46	$8.04^{+0.81}_{-0.73}$	539	$7.92^{+1.03}_{-0.9}$	412.8
73	$6.85^{+1.22}_{-0.99}$	206.3	$7.75^{+1.7}_{-1.39}$	87.8
117	$13.11^{+2.66}_{-2.07}$	43.3	-	-

$$f(\theta) = \frac{A}{\theta_d(\theta + 0.085\theta_d)} \exp[-1.54(\theta/\theta_d)^{1.52}]$$

The two sets of data are consistent with each other.

Combined morphology analysis method with two data sets

• Morphology model:

$$f(\theta) = \frac{A}{\theta_d(\theta + 0.085\theta_d)} \exp[-1.54(\theta/\theta_d)^{1.52}],$$

• Detected signal distribution

 $N^{\text{source}}(\theta) = f(\theta_d) \bigotimes PSF$

• Likelihood Analysis

$$\Delta \ln \mathcal{L} = \sum_{j=1}^{n} \left(\ln \left[\frac{P\left(N_{j}^{\text{obs}}, N_{j}^{\text{bkg}} + N_{j}^{\text{G}} + N_{j}^{\text{M}}\right)}{P\left(N_{j}^{\text{obs}}, N_{j}^{\text{bkg}}\right)} \right]_{1/2KM2A} + \ln \left[\frac{P\left(N_{j}^{\text{obs}}, N_{j}^{\text{bkg}} + N_{j}^{\text{G}} + N_{j}^{\text{M}}\right)}{P\left(N_{j}^{\text{obs}}, N_{j}^{\text{bkg}}\right)} \right]_{3/4KM2A} \right)$$

$$1/2KM2A \text{ Likelihood}$$

$$3/4KM2A \text{ Likelihood}$$

Morphology of Gemingna by 3/4 KM2A and 1/2 KM2A

Mophology of Monogem by 3/4 KM2A and 1/2 KM2A

The joint fitting morphology with two data sets

117

$E_{\gamma}(TeV)$	$\theta_d(^\circ)$	TS
15	$6.92^{+0.79}_{-0.7}$	302
21	$6.85^{+0.61}_{-0.56}$	484.3
31	$7.63^{+0.46}_{-0.43}$	1200.3
46	$8.04^{+0.63}_{-0.58}$	944.2
73	$7.3^{+0.99}_{-0.86}$	274

TABLE III. Diffusion angle measured by two data sets.

$$f(\theta) = \frac{A}{\theta_d(\theta + 0.085\theta_d)} \exp[-1.54(\theta/\theta_d)^{1.52}]$$

43.3

 $13.23^{+7.82}_{-4.75}$

The joint fitting spectra with two data sets

The shading area denotes the 1σ statistic error.

The spectra according to diffusion model:

 $\frac{dN}{dE} = (1.57 \pm 0.09_{\text{stat}}) \times 10^{-14} (\text{TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}) \times (E/30TeV)^{-2.62 \pm 0.10_{\text{stat}} - (0.94 \pm 0.20_{\text{stat}}) \ln(E/30TeV)}$

$$\frac{dN}{dE} = (0.80 \pm 0.06_{\text{stat}}) \times 10^{-14} (\text{TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}) \times (E/30TeV)^{-3.24 \pm 0.12_{\text{stat}} - (0.84 \pm 0.24_{\text{stat}}) \ln(E/30TeV)}$$

Research on Diffusion coefficient

-The global fit of electron spectrum and diffusion coefficient

The influence of injected spectrum on morphology

- Diffusion keeps the same.
- Changing the injected electron spectrum solid line: Q=E⁻² dashed line: Q= E^{-1.2} exp(-(E/150TeV)²)
- The energy-dependent morphology also changed.

Both the injected spectrum and diffusion process decide the morphology of γ rays.

Check the method by simulation

Generate simulated signals:

Input parameter: flux of Gemigna and Monogem; diffusion

 $Q(Geminga) = 7.9 \times 10^{-6} (\frac{E}{130TeV})^5 \times e^{-E/14TeV}$ $Q(Monogem) = 1.3 \times 10^{-6} (\frac{E}{130TeV})^5 \times e^{-E/14TeV}$ $D(E) = 1.1 \times 10^{28} E^{0.65}$

Check the method by simulation

Best-Fiting results:

Geminga:

alpha: 7.9e-06 +- 3.7e-05 beta: 5 +- 3.36 Ecut: 14 +- 6.32 Monogem:

alphaM: 1.3e-06 +- 8.35e-06 betaM: 5 +- 3.87 EcutM: 14 +- 7.33 D=1.1e28*E^(0.65+-0.5)

Input parameter:

$$\begin{split} Q(Geminga) &= 7.9 \times 10^{-6} (\frac{E}{130TeV})^5 \times e^{-E/14TeV} \\ Q(Monogem) &= 1.3 \times 10^{-6} (\frac{E}{130TeV})^5 \times e^{-E/14TeV} \\ D(E) &= 1.1 \times 10^{28} E^{0.65} \end{split}$$

The injection spectrum influences the energy dependence of the diffusion coefficient

 The energy-dependence of diffusion coefficient is sensitive to the assumption of the electron spectrum. Implication on the electron spectrum by ½KM2A

Find the best-fitting injection spectrum when fixing D0 at 1.1e28 and δ at 0.3/0.6/1.0/2.0, respectively.

 Injected spectrum of Geminga under different assumptions of

$$\begin{split} &\delta = 0.3Q(E) = (6.40 \pm 0.89) \times 10^{10} (E/130TeV)^{(-6.53\pm3.06) + (-6.80\pm5.86) ln(E/130TeV)} \\ &\delta = 0.6(E) = (6.60 \pm 0.79) \times 10^{10} (E/130TeV)^{(-5.49\pm2.06) + (-5.21\pm3.92) ln(E/130TeV)} \\ &\delta = 1.0Q(E) = (6.70 \pm 0.80) \times 10^{10} (E/130TeV)^{(-4.63\pm1.32) + (-3.99\pm2.50) ln(E/130TeV)} \end{split}$$

Injected spectrum of Geminga under different assumptions of δ
 Injected spectra index=-4 @ 100TeV

Conclusion

- The data of ¾KM2A are consistent with the analysis results of ½KM2A
- The morphology of the two sources does not vary significantly from 15 to 73 TeV
- Measured Geminga morphology at 110 TeV with ¾Km2A
- The energy-dependence of diffusion coefficient is sensitive to the assumption of the electron spectrum.
- The shape of the electron spectrum is relatively narrow, regardless of δ =0.3/0.6/1.

some drafts

Implication on the electron spectrum by ½KM2A

通过固定扩散系数的能量依赖δ=0.3/0.6/1 来推测电子注入谱

Crab analysis with ³/₄ KM2A – - PSF

Crab analysis with ³/₄ KM2A -- SED

