

Progress report on nuclei flux

Hu Liu 2021-10-14 @Shanghai Southwest Jiaotong University

Outline

- Energy and mass reconstruction method
- Progress on all particle flux
- Progress on light nuclei flux

Energy and Mass reconstruction method

MC Sample:

WFCTA(6 telescopes)+KM2A half array

Components: Proton, Helium, CNO, MgAlSi, Iron

Energy range: 10¹³~10¹⁶ eV

Zenith Angle: 20°~40°

Azimuth Angle: -85°~95°

Core Range: 600m X 600m, zero is the center of 6 telescopes

Hadronic interaction model: QGSJET+FLUKA

Core and Direction Resolution

NKG-like function for lateral distribution of nuclei: $\rho(r) = n_e (\frac{r}{r_m})^{s-2.5} (1 + \frac{r}{r_m})^{s-4.5}, r_m = 130m$

Core Resolution

Direction Resolution

Core resolution<2m, direction resolution<0.1° @ few PeV

Principle of the method

- Two variables are used. **Nsize** (integration of NKG-like function) Nu (NuM4, 15~400m to the core)
- Correct for the zenith angle and age dependences zenith angle: different amount of material traversed age(from lateral distribution): shower to shower fluctuation
- E and logA reconstruction Nsize and Nu are dependent on energy and mass (after correcting other effects) E and logA is reconstructed from Nsize and Nu 5

E and logA from Nsize and Nu

Performance of the method

Energy bias<3%, energy resolution: 15%@1PeV, 10%@10PeV

Energy

Particle Identification @1PeV

All particle flux

Data: KM2A half array,~1 year's data (2019-12~2020-11) Selection:

core range: Dr>60m, +-290m from center of WFCTA

direction: 21°<zenith<39°, -84°<azimuth<94°

NtrigE>20 && NfiltE>50, NuM4>0

NpE1/NpE2>2

0.8<age<2.2

Selection efficiency and Acceptance

Acceptance

Efficiency: denom: events inside the geometry num: events after selection

Efficiency is 100% after logE=5.7 for all nuclei Acceptance at high energy is 4.85*10⁴ m² sr (due to limited core&direction region in MC) Exposure time is 2.6*10⁷ s

Data MC comparison

Nu

Nsize and Nu agree with each other within 10% between data and MC, except for low energy.

Preliminary All Particle Flux

The knee of all particle spectra located at ~4PeV

the fluctuation below few PeV may due to overfitting during reconstruction

There are variations within maximum of ~8%, except azimuth angle. Still checking...

Light Nuclei Counting: Template Fitting

Preliminary Proton Flux

Purity vs Selection Efficiency

The Helium(or proton+helium) flux is possible, the coupling of N_{He} and N_{CNO} is studying.

16

Summary

- A new unbiased energy and mass reconstruction method is provided
- Preliminary all particle and proton flux is shown
- These measurements provide independent results besides WFCTA

Light Nuclei Flux: unfolding method

Difficulties: migration between different energy bins and different mass bin

reference: DOI:https://doi.org/10.1103/PhysRevLett.123.181102 AMS02 He3,He4 flux measurements

Figure 8: Unfolded momentum distributions for events near $E_{k/n} = 5$ GeV/n compared with measured momentum for those events. Unfolded distributions are multiplied by an arbitrary factor for plotting on the same axes.

Figure 9: Re-folding of the distributions shown at left, along with their sum (in green), for comparison with data in $E_{k/n} = 5$ GeV/n bin.

- select narrow rec. energy bin (to avoid the effect of nuclei flux on true energy distribution), reconstruct the true energy distribution, based on MC
- 2. reconstruct mass distribution from true energy distribution, based on MC
- fit the data mass distribution with the templates from MC with previous step. Derive the fraction of each component
- 4. adding the true energy distribution of each rec. energy bin, derive the counts of each component vs true energy

Core Resolution

NKG-like function for lateral distribution of nuclei: $\rho_2(r) = N_e C(s) \left(\frac{r}{r_m}\right)^{s-\alpha} \left(1 + \frac{r}{r_m}\right)^{s-\beta}$

Direction Resolution

All Particle Flux

22

