

Search for Dark Matter gamma-ray emission from dwarf spheroidal galaxies with LHAASO-KM2A

Linqing Gao(高林青)¹、Jun Li(李军)²、Xiaojun Bi(毕效军)¹、Xiaoyuan Huang(黄晓渊)²

¹高能物理研究所 ²紫金山天文台

2021.10.14@上海

- Introduction of Dark Matter and Dwarf spheroidal galaxies (dSphs)
- As an example, we show constraints from Segue 1 for both annihilation and decay processes
- Constraints from all Dwarf spheroidal galaxies are given

Evidence of DM

Galaxy rotation curve , Bullet Cluster , Dwarf Galaxy , CMB

dwarf spheroidal (dSph) galaxy

Dark Matter (WIMPs) detection: Collider, Direct Detection and Indirect Detection

The Milky Way dwarf spheroidal (dSph) galaxy is considered to be one of the most promising targets for indirect detection of DM

- Proximity : satellites of the Milky-Way halo
 (< 100 kpc for many of them)
- **2.** Low γ-ray background:

Lack of astrophysical $\gamma\text{-ray}$ production mechanisms Dense DM

3. Low γ-ray background from galactic

higher galactic latitude for many of them

Results of other experiments

arXiv:1706.01277v1

arxiv: 1503.02641

PoS ICRC2021 (2021) 512

10/14/2021

19 dwarf galaxies are chosen within LHAASO view

	RA.	DEC.	$r_{ m eff}$	$ heta_{ m max}$	$\log_{10} J_{\rm obs}$	$\log_{10} D_{\rm obs}$
Source	(deg)	(deg)		(deg)	$({\rm GeV^2 cm^{-5}})$	$(\log_{10}[\text{GeVcm}^{-2}])$
Boötes I	210.02	14.50	0.352	0.47	18.2 ± 0.4	17.9 ± 0.2
Canes Venatici I	202.02	33.56	0.398	0.53	17.4 ± 0.3	17.6 ± 0.5
Canes Venatici II	194.29	34.32	0.399	0.13	17.6 ± 0.4	17.0 ± 0.2
Coma Berenices	186.74	23.90	0.377	0.31	19.0 ± 0.4	18.0 ± 0.2
Draco	260.05	57.92	0.442	1.30	18.8 ± 0.1	18.5 ± 0.1
Draco II*	238.20	64.56	0.451	_	18.1 ± 2.8	18.0 ± 0.9
Hercules	247.76	12.79	0.348	0.28	16.9 ± 0.7	16.7 ± 0.4
Leo I	152.12	12.30	0.346	0.45	17.8 ± 0.2	17.9 ± 0.2
Leo II	168.37	22.15	0.372	0.23	18.0 ± 0.2	17.2 ± 0.4
Leo IV	173.23	-0.54	0.303	0.16	16.3 ± 1.4	16.1 ± 0.9
Leo V	172.79	2.22	0.314	0.07	16.4 ± 0.9	15.9 ± 0.5
Pisces II [*]	344.63	5.95	0.327	_	16.9 ± 1.6	17.0 ± 0.6
Segue 1	151.77	16.08	0.357	0.35	19.4 ± 0.3	18.0 ± 0.3
Sextans	153.26	-1.61	0.299	1.70	17.5 ± 0.2	17.9 ± 0.2
Triangulum II*	33.32	36.18	0.403		20.9 ± 1.3	18.4 ± 0.8
Ursa Major I	158.71	51.92	0.432	0.43	17.9 ± 0.5	17.6 ± 0.3
Ursa Major II	132.87	63.13	0.449	0.53	19.4 ± 0.4	18.4 ± 0.3
Ursa Minor	227.28	67.23	0.455	1.37	18.9 ± 0.2	18.0 ± 0.1
Willman 1^*	162.34	51.05	0.430	_	19.5 ± 0.9	18.5 ± 0.6

arxiv: 1910.05017 1903.11910 Data:

KM2A Half Array Data: 2019.12.27-2020.11.30 V1 Live time: 312.6 days

Method:

Almost same as Crab (1).

Energy bin width: logE = 0.2Estimate the background with the "direct integration method"

(1) Chinese Physics C Vol. 45, No. 2 (2021) 025002

Annihilation process of DM

Flux prediction, $\langle \sigma v \rangle$ is the only parameter

$$\frac{dF}{dE}_{annihilation} = \frac{\langle \sigma_A v \rangle}{8\pi M_\chi^2} \frac{dN_\gamma}{dE} J$$

1. DM distribution: Navarro-Frenk-White (NFW) model

$$J = \int_{\text{source}} d\Omega \int dx \rho^2(r(\theta, x))$$

$$\rho_{\text{NFW}}(r) = \frac{\rho_s}{(r/r_s)^\gamma (1 + (r/r_s)^\alpha)^{(\beta - \alpha)/\gamma}}$$
1606.04898

2. Differential flux per annihilation: $\frac{dN_{\gamma}}{dE}$, HDMSpectra package arxiv: 2007.15001

3. Final states

 $b\bar{b}, t\bar{t}, \mu^+\mu^-, \tau^+\tau^-, \text{ and } W^+W^-$

This particles could generate stable particles, such as gamma, eletron, protons, neutrinos Give constraints for each final states below

10/14/2021

arXiv:1408.0002

Annihilation spectrum for dark matter $\frac{dN_{\gamma}}{dE}$

As an example: Segue 1

$$L = \prod_{i} P(Non_{i}, Noff_{i} + Nsig_{i}(\langle \sigma v \rangle)) * \mathcal{J}_{Jfac}$$
$$TS = 2Log\left(\frac{L_{1}(\langle \sigma v \rangle)}{L_{0}(\langle \sigma v \rangle = 0)}\right)$$
$$TS \sim chi2(1)$$
$$TS_{max} - 2.71 = TS_{95\%}$$

Absorption of gamma-rays:

ISRF (including starlight, IR and CMB)

$$\tau_{\gamma\gamma}^{\text{CMB}}(E_{\gamma},L) = \frac{-4T_{\text{CMB}}L}{\pi^{2}E_{\gamma}^{2}} \int_{m_{e}}^{\infty} \varepsilon_{c}^{3} \sigma_{\gamma\gamma}(\varepsilon_{c}) \ln \left[1 - e^{-\frac{\varepsilon_{c}^{2}}{E_{\gamma}T_{\text{CMB}}}}\right] d\varepsilon_{c}$$
$$\tau_{\gamma\gamma}^{\text{SL+IR}}(E_{\gamma},L,b,l) = \int_{0}^{L} ds \iint \sigma_{\gamma\gamma}(E_{\gamma},\varepsilon) n_{\text{SL+IR}} \left[\varepsilon, \mathbf{x}(s,b,l)\right] \frac{1 - \cos\theta}{2} \sin\theta d\theta d\varepsilon$$

$$\sigma_{\gamma\gamma} = \frac{\pi}{2} \frac{\alpha^2}{m_e^2} (1 - \beta^2) \left[(3 - \beta^4) \ln\left(\frac{1 + \beta}{1 - \beta}\right) - 2\beta(2 - \beta^2) \right]$$
$$\beta = \sqrt{1 - 1/s} \quad \text{, and} \quad s = \frac{\varepsilon E_{\gamma}}{2m_e^2} (1 - \cos\theta) \,,$$

n_{SL+IR} : from GALPROP

Constraints from Segue 1

Decay process of DM

$$\Phi = \frac{1}{4\pi} \frac{1}{m_\chi \tau} \int_{E_{\rm min}}^{E_{\rm max}} \frac{dN_\gamma}{dE_\gamma} dE_\gamma \times D$$

$$D = \int_{\text{source}} d\Omega \int_{\text{l.o.s}} dx \rho(r(\theta, x))$$

	RA.	DEC.	Distance	$r_{ m eff}$	$ heta_{\max}$	$\log_{10} D_{\rm obs}$
Source	(deg)	(deg)	(kpc)		(deg)	$(\log_{10}[\text{GeV}\text{cm}^{-2}])$
Boötes I	210.02	14.50	66	0.352	0.47	17.9 ± 0.2
Canes Venatici I	202.02	33.56	218	0.398	0.53	17.6 ± 0.5
Canes Venatici II	194.29	34.32	160	0.399	0.13	17.0 ± 0.2
Coma Berenices	186.74	23.90	44	0.377	0.31	18.0 ± 0.2
Draco	260.05	57.92	76	0.442	1.30	18.5 ± 0.1
Draco II*	238.20	64.56	24	0.451	-	18.0 ± 0.9
Hercules	247.76	12.79	132	0.348	0.28	16.7 ± 0.4
Leo I	152.12	12.30	254	0.346	0.45	17.9 ± 0.2
Leo II	168.37	22.15	233	0.372	0.23	17.2 ± 0.4
Leo IV	173.23	-0.54	154	0.303	0.16	16.1 ± 0.9
Leo V	172.79	2.22	178	0.314	0.07	15.9 ± 0.5
Pisces II*	344.63	5.95	182	0.327	_	17.0 ± 0.6
Segue 1	151.77	16.08	23	0.357	0.35	18.0 ± 0.3
Sextans	153.26	-1.61	86	0.299	1.70	17.9 ± 0.2
Triangulum II*	33.32	36.18	30	0.403	—	18.4 ± 0.8
Ursa Major I	158.71	51.92	97	0.432	0.43	17.6 ± 0.3
Ursa Major II	132.87	63.13	32	0.449	0.53	18.4 ± 0.3
Ursa Minor	227.28	67.23	76	0.455	1.37	18.0 ± 0.1
Willman 1*	162.34	51.05	38	0.430	-	18.5 ± 0.6

arXiv:1408.0002 1802.06811 1603.08046

Annihilation process

Decay process

- Combined

No.

10¹

10²

10³

m_{DM}[TeV]

104

10⁵

106

1022

1021

10⁰

 $\chi \rightarrow t\bar{t}$ --- CanesVenaticill 1022 - HAWC (w/o Trill) - Leol ····· HAWC (w/ Trill) --- Leoll --- Sextans ---- TriangulumII --- LeoIV ---- UrsaMajorl ---- Seguel ---- UrsaMajorII 1021 ---- Hercules - Draco --- Bootes1 --- UrsaMinor - ComaB --- CanesVenaticil 10²⁰ · 101 100 102 M_x [TeV]

HAWC results

10/14/2021

1022

1021

100

- Combined

10¹

10²

10³

m_{DM}[TeV]

10⁵

106

104

- We focus on 19 Dwarf spheroidal galaxies
- Five processes: $b\bar{b}$, $t\bar{t}$, $\mu^+\mu^-$, $\tau^+\tau^-$, and W^+W^-
- Constraints from annihilation and decay processes of Dark Matter are given for 19 dSphs
- For m_{DM} >100 TeV, LHAASO could give most strigent constraints; For m_{DM} <100TeV, constraints are weaker than HAWC results, WCDA is needed

Thank You !!!

总结

10/14/2021

Absorption of gamma-rays for all dSphs:

CMB

ISRF (without CMB)

