Measurement of light composition energy spectrum with the LHAASO experiment

Liping Wang^{1,2}, Lingling Ma², ShouShan Zhang², Cunfeng Feng¹ I.Shandong University, Qingdao, China

2 .Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS, Beijing, China Oct 14th, 2021

Outline

Background introduction

Data introduction and comparison of experiment data and MC

Multiple Variable Analysis

Result of experiment

Summary and next step

Background

Due to the low flux, CRs with energies higher than 100TeV can only be detected by ground-based experiments.

Their primary energies and composition is unknow . It can only be reconstructed based on characteristics of the hadronic showers.

- The absolute energy scale is uncertain
- Composition and energies are dependent on each other
- Dependent on hadronic models
- Composition discrimination is difficult
- Can LHAASO solve these difficulties?

LHAASO INTRODUCTION

rinciple of th

primary partic

LHAASO INTRODUCTION

primary partic

Data introduction and Comparison

Introduction to experiment

- Date: 2020.11.1-2020.11.30;2021.1.1-2021.2.28
- Weather: clear and moonless night
- Effective observation time: 189.6h
- Introduction to MC
 - Joint data:6 WFCTA && $\frac{1}{2}KM2A$
 - Energy:10TeV-10PeV
 - Composition: Proton Helium Iron CNO MgAlSi
 - Hadronic interaction model: QGSJET_FLUKA
 - Zenith: $20^{\circ} \sim 40^{\circ} \&\& Azimuth: -85^{\circ} \sim 95^{\circ}$
 - Sampling area: ±300m
 - Spectrum index : -1
 - Composition model : Gaisser model

Data introduction and Comparison

• Event selection

KM2A array :

- > Successful reconstruction : $theta_{rec} > 0$
- > Trigger detector : NtrigE > 20
- > Number of muon (40-200):Nu > 0
- > Number of Electromagnetic particle : $NpE2 > 20 \&\& \frac{NpE1}{NpE2} > 2$

WFCTA array :

> Npix of Cherenkov image : Npix > 10

Geometry Filter :

- ➢ Reconstruction core: cut pool edge events && cut events far from telescope: √(x + 86)²+(y + 180)² < 200</p>
- > The distance from the telescope to the center of the shower : $50m < RecR_p < 150m$

Data introduction and Comparison

- Reconstruction resolution after filter
 - $(E_{rec} = \frac{1}{1.013} \times (log10\sqrt{ANpE2 \times ANuM3} + 1.722))$

- **※** Resolution of energy reconstruction is 15% with energy higher than 1PeV
- **※** Resolution of core reconstruction is 1.5m with energy higher than 1PeV
- % Resolution of angular reconstruction is 0.1° with energy higher than 1PeV

 \circ The reconstruction resolutions are improve with energy increasing

Comparison between simulation and data

- ✓ ANuM4: In circle 30-380; density of muon * area
- ✓ ANpE2: In circle 40-200; density of Electromagnetic particles * area
- ✓ $\frac{Length}{Width}$: Length and width ratio of Cherenkov image
- ✓ Size: Total size of Cherenkov photons detected by WFCTA
 - MC simulation and data are consistent within 25%
 - Event rate of MC :0.14Hz ; event rate of experiment :0.16Hz

Parameters sensitive to compositions

I. Sensitive parameter in KM2A array: Muon $(N_{\mu} = A(\frac{E}{AC})^{\beta} = A^{1-\beta}(\frac{E}{C})^{\beta})$

 N_{μ} is sensitive compositions, but energy dependent

Step1: reconstruct energy Step2: energy correction for muon

II. Sensitive parameter in KMA array: Electromagnetic particles $N_e \approx \frac{a}{gE_c^e} (AE_c^{\pi})^{-b} E_0^{1+b}$

Step1: reconstruct energy Step2: energy correction for electromagnetic particles

III. Sensitive parameter in WFCTA array: $\frac{Length}{Width}$ Step1: Rp correction for $\frac{L}{W}$ && Rp correction for Size Step2: After Rp correction, Size correction for $\frac{L}{W}$

Multiple Variable Analysis(Classification)

Input variables

Signal : Proton + Helium Background : Iron + MgAlSi + CNO

- Myvar1: ANuM4_{correct}
- Myvar2: <u>Length</u> Width correct
- Myvar3:ANpE1_{correct}

Weak correlation between the three variables

Multiple Variable Analysis(Classification)

Receiver Operating Characteristic(ROC)

TMVA comparison

The training results are in good agreement with the test results

Multiple Variable Analysis(Application)

Input data:MC data

HAASO

Identify experiment data by MVA

spectrum of Light

- ✓ Score distribution of experiment and MC
- ✓ Preliminary results of light component energy spectrum

Summary and next step

Summary:

- Purity of light compositions decrease in high energy Maybe:
 - * poor identification of L/W in high energy
 - * The proportion of heavy nuclear components increases in high energy
- Purity >75% and Aperture $\approx 850(m^2Sr)$
- BDTG_score is related to energy

Next Step:

- Use the combined data from six telescopes to measurement light composition energy spectra
- Improve MC data of WFCTA
- Study other variables to identify compositions
- Study system uncertainties caused by composition models and hadronic models

BACK UP

事例挑选效率和MVA挑选效率

Efficiency of MVA

log10(ANuM4)-0.9136*log10(sqrt(ANpE2*ANuM3)):log10(ANpE1)-1.147*log10(sqrt(ANpE2*ANuM3)) (weight)

)/14

Throw events of Light composition

The Secend LHAASO Collaboration Meeting in 2021

只做Km2A和芯位筛选, 第一行重建能量, 第二行原初能量

只做Km2A和芯位筛选, 横坐标重建能量, Nu<-0.025

