
Considerations on package management for
CEPCSW

Tao Lin

2020 年 3 月 30 日

1 / 8



Outline

Convention for package name/organization/category

A large repo or a number of repos

Summary

2 / 8



Package
I A project is divided into a lot of packages.

I BESIII offline: about 355 packages, JUNO offline: about 120
packages

I Each package is belong to a specific category:
I Core, Detector, Event, Utilities, Database
I Generator, Simulation, Reconstruction
I Analysis

I A package contains a list of source files, which can be
organized as following:

I Header directory: the public header files, which will be used by
other packages. For an example, a service interace.

I Source directory: both internal header files and source files.
I Script or configuration directory

I A package can produce several different types of libaries:
I Module: a specific shared library, with all symbol resolved, can

be loaded dynamically. It should not be linked by others.
I Library: a common shared library, which will be linked by

others.
3 / 8



Examples of Module and Library

Athena (ATLAS)

Module: DetectorDescription/GeometryDBSvc

I GeometryDBSvc/IGeometryDBSvc.h
I share
I src
I CMakeLists.txt

Library: DetectorDescription/Identifier

I Identifier
I share
I src
I CMakeLists.txt

4 / 8



Category

I Core: Framework related.
I Detector: Detector description, geometry service related.
I Event: event data model related. Wrapper on edm4hep/plcio.
I Utilities: common tools. Such as timer.
I Database: Database related.
I Generator: physics generators.
I Simulation: detector simulation, digitization.
I Reconstruction

I Vertex
I Tracking
I Calo

I Analysis

5 / 8



Different organizations

Both need additional utilities, as our project consists a lot of
packages.

A large repo

I All packages are in one git repo.
I Easy to manage.
I If there are a lot of packages, time consuming to build them.

A number of small repos

I Each package is in its own git repo.
I Don’t need to checkout the complete project.
I If there are too many repos, difficult to manage them.

6 / 8



Do we need a utility Git-CEPC?

I have created Git-BOSS before, to help BESIII developers migrate
their developing environment to Git.

$ source /afs/ihep.ac.cn/bes3/offline/ExternalLib/\
SLC6/contrib/git/setup.sh

$ git boss initwork myworkarea
$ cd myworkarea
$ git boss listpkgs
$ git boss addpkg Analysis/Physics/RhopiAlg

The magic is Sparse Checkout. My tool is a wrapper to edit file
.git/info/sparse-checkout.
See source code:
http://code.ihep.ac.cn/lintao/git-boss/-/blob/master/
git-boss

7 / 8

http://code.ihep.ac.cn/lintao/git-boss/-/blob/master/git-boss
http://code.ihep.ac.cn/lintao/git-boss/-/blob/master/git-boss


Summary

I It is necessary to share the same convention on the package
management.

I I prefer a large repo, but with addition utilities to help users.

8 / 8


	Convention for package name/organization/category
	A large repo or a number of repos
	Summary

