
τ Decay Mode
Classification with
Neural Network

Bowen Zhang
NJU τ meeting
30.03.2020

11/02/2020 2
arxiv:1512.05955

Introduction
● Improve the five-way τ decay mode classification using

machine learning techniques:
● Categorized by the number of charged and neutral products
● Previously use kinematics of the decay products, the

identification score of pi0 and the number of photons

https://arxiv.org/abs/1512.05955

11/02/2020 3

● The algorithm will be upgraded to neural network version in Run3
● Use information from:

– Charged PFO, Neutral PFO, Photon Shots and Conversion Tracks

Introduction

11/02/2020 4

Recap

● Last presentation:
– Replace Pi0 BDT score by the Pi0 BDT ID inputs → gain

the same performance
– Show rough performance plots with python package

● Remaining task:
– Overfitting issue
– Impact of pt and tau ID requirements
– C++ implementation

11/02/2020 5

Sample
● Still using mc16d Gammatautau

– mc16_13TeV:mc16_13TeV.425200.Pythia8EvtGen_A14NNPDF23LO_Gammatautau_MassWeight.merge.AOD.e5468_
s3126_r10201_r10210

● 4M for training (20% of it for validation) 4M for testing (split by mcEventNumber)
● pt selection:

– Last time: pt < 100 GeV, this time: pt < 300 GeV

DeltaR(tau0, tau1) in Gammatautau sample

20/3/30 6

RNN Model

● Simplify the model. Number of parameters is reduced by ~ a
factor of 3. (Now ~40k) → overfit mitigates (see next)

*TDD= TimeDistributed+Dense

ChargedPFO (6 features) x3

NeutralPFO (21 features) x10

ShotPFO (6 features) x6

Conversion Trk (6 features) x4

TDD* 20

TDD 60, 60

TDD 20

TDD 20

LSTM 10

LSTM 30

LSTM 10

LSTM 10 De
ns

e
10

0→
80

→4
0

Fi
ve

 d
ec

ay
 m

od
es

;; Number of nodes roughly optimised by RandomSearch using
KerasTuner package

20/3/30 7

Overfitting issue

Conclusion:
- The overfitting issue was mitigated and the validation
performance improved a little.
- Further regularization method (Cross validation, drop out, …)
and learning rate schedule can still be considered.

Last time
LR = LR / 0.2

20/3/30 8

Evaluation
● The networks are converted and processed by LWTNN.
● The performance are evaluated by THOR/LOKI.
● THOR:

– DecayModeClassifier (EnsureTrackConsistency=T)
– NN Classifier prediction must be consistent with tau prongness. Avoid transition

between 1-track and 3-track taus
● LOKI:

– Same setup as PanTau PlotBook except some baseline cuts.
– taus.pt10Truth → taus.pt20Truth, add truth match kinematic (eta25Truth,

vetoCrackTruth)
– No maximum pt requirement, ID WP = BDT medium

20/3/30 9

Performance of RNN

20/3/30 10

Performance of RNN vs BDT

BDT

RNN

20/3/30 11

Performance of RNN vs BDT

1p0n 1p1n 1pXn

20/3/30 12

Performance of RNN vs BDT

3p0n 3pXn

20/3/30 13

Deep Sets: Brief Intoduction

● Developed by Machine learning community:
– Paper | GitHub

● To handle to case when the inputs (or outputs) are permutation invariant
and have variable size.

● Collision events have the similar properties.
● Current algorithms do not work well with them:

– DNNs: inputs have fixed size.
– RNNs: have to define the order of the sequences

● Deep Sets in HEP
– Energy Flow Networks: Paper
– Jet flavour tagging: RNNIP

https://papers.nips.cc/paper/6931-deep-sets
https://github.com/manzilzaheer/DeepSets
https://link.springer.com/article/10.1007/JHEP01(2019)121

20/3/30 14

Deep Sets: Invariant model

● Theorem:

– A function f(X) operating on a set X is invariant to the permutation of
instances in X, iff it can be decomposed in the form (∑ ()), summing 𝜌 𝜙 𝑥

over element in set X, with suitable transformation and .𝑥 𝜙 𝜌

● Network Architecture

– → 𝑥 representation () by 𝜙 𝑥 network.𝜙

– The representations are added up (SumLayer)
– Then the sum is processed by network.𝜌

There are also equivariant models,. in which all layers are equivariant to the permutations of . 𝑥

Here only consider invariant model.

20/3/30 15

Deep Sets Model
● Each PFO/track set is represented by (𝑓 𝑥)= (∑ ()), then passed to a 𝜌 𝜙 𝑥

batch normalisation layer and then merged.

● ~45k parameters in total. Training history much similar like RNN.

 TDD= TimeDistributed+Dense

;; Number of nodes roughly optimised by RandomSearch using
KerasTuner package

𝑓[ChargedPFO (6 features) x3]

𝑓[NeutralPFO (21 features) x10]

𝑓[ShotPFO (6 features) x6]

𝑓[Conversion Trk (6 features) x4]

BatchNorm

BatchNorm

BatchNorm De
ns

e
10

0→
10

0→
40

Fi
ve

 d
ec

ay
 m

od
esBatchNorm

nodes 𝜙=TDD 𝜌=Dense

Charged 20,20,20 20,20,20

Neutral 80,80,60,60 60,60,40

Shot 20,20,20 20,20,20

ConvTrk 20,20,20 20,20,20

20/3/30 16

Performance of DSN

20/3/30 17

Performance of DSN vs RNN

1p0n 1p1n 1pXn

20/3/30 18

Performance of DSN vs RNN

3p0n 3pXn

20/3/30 19

Summary
● Overtraining issue:

– Mitigated by simplifying the model and tuning the LR schedule
● The performance doesn’t get worse.
● Better than last time but still need some investigate.

● Rough hyper-parameter scan was attempted for RNN (and DSN)
● Evaluate on medium BDT ID taus shows better result
● Can use up to 300GeV taus for training (or remove the pt requirement?)
● Performance are evaluated using THOR/LOKI. Networks are inferred by LWTNN.
● RNN is compared with BDT:

– Better performance for all mode
● RNN is compared with DSN:

– Consistent behaviour.
– DSN slightly outperforms. Needs double-check.

20/3/30 20

Backup

20/3/30 21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

