т Decay Mode Classification with Neural Network

Bowen Zhang NJU τ meeting 30.03.2020

Introduction

- Improve the five-way τ decay mode classification using machine learning techniques:
- Categorized by the number of charged and neutral products
- Previously use kinematics of the decay products, the identification score of pi0 and the number of photons

Decay mode test	$N(\pi_{\text{cand}}^0)$	$N(\pi_{ m ID}^0)$	Variables
$h^{\pm} \{0, 1\} \pi^0$	≥ 1 1	0 1	$S_1^{\text{BDT}}, f_{\pi^0,1}, \Delta R(h^{\pm}, \pi^0), D_{h^{\pm}}, N_{\gamma}$
$h^{\pm}\left\{1,\geq 2\right\}\pi^{0}$	≥ 2 ≥ 2	$1 \\ \ge 2$	$S_2^{\text{BDT}}, f_{\pi^0}, m_{\pi^0}, N_{\pi^0}, N_{\gamma}$
$3h^{\pm} \{0, \ge 1\}\pi^0$	≥ 1 ≥ 1	$\begin{array}{c} 0\\ \geq 1 \end{array}$	$S_{1}^{\text{BDT}}, f_{\pi^{0}}, \sigma_{E_{\text{T}},h^{\pm}}, m_{h^{\pm}}, N_{\gamma}$

11/02/2020

arxiv:1512.05955

Introduction

- The algorithm will be upgraded to neural network version in Run3
- Use information from:
 - Charged PFO, Neutral PFO, Photon Shots and Conversion Tracks

- Last presentation:
 - Replace Pi0 BDT score by the Pi0 BDT ID inputs → gain the same performance
 - Show rough performance plots with python package
- Remaining task:
 - Overfitting issue
 - Impact of pt and tau ID requirements
 - C++ implementation

Sample

- Still using mc16d Gammatautau
 - mc16_13TeV:mc16_13TeV.425200.Pythia8EvtGen_A14NNPDF23L0_Gammatautau_MassWeight.merge.AOD.e5468_ s3126_r10201_r10210
- 4M for training (20% of it for validation) 4M for testing (split by mcEventNumber)
- pt selection:
 - Last time: pt < 100 GeV, this time: pt < 300 GeV</p>

11/02/2020

DeltaR(tau0, tau1) in Gammatautau sample

RNN Model

 Simplify the model. Number of parameters is reduced by ~ a factor of 3. (Now ~40k) → overfit mitigates (see next)

;; Number of nodes roughly optimised by RandomSearch using KerasTuner package

20/3/30

*TDD= TimeDistributed+Dense

Overfitting issue

Conclusion:

- The overfitting issue was mitigated and the validation performance improved a little.

- Further regularization method (Cross validation, drop out, ...) and learning rate schedule can still be considered.

Evaluation

- The networks are converted and processed by LWTNN.
- The performance are evaluated by THOR/LOKI.
- THOR:
 - DecayModeClassifier (EnsureTrackConsistency=T)
 - NN Classifier prediction must be consistent with tau prongness. Avoid transition between 1-track and 3-track taus
- LOKI:
 - Same setup as PanTau PlotBook except some baseline cuts.
 - taus.pt10Truth → taus.pt20Truth, add truth match kinematic (eta25Truth, vetoCrackTruth)
 - No maximum pt requirement, ID WP = BDT medium

Performance of RNN

Performance of RNN vs BDT

Diagonal: 73.1%

5.6

91.2

0.6

1.4

Efficiency

58.8

35.9

1.7

3.2

BDT

o Tau Decay Mode PanTau

3pXn

3p0n

1pXn

1p1n

0.0

0.1

2.0

17.1

Ipon 80.9 10.5 2.8 1.2 0. 1pon 1p1n 1pXn 3p0n 3p3 True True True Diagonal: 79.9 Ipon 0.0 0.5 0.6 3.3 63 Ipon 1p2n 0.0 0.5 0.6 3.3 63 Ipon 1pXn 0.0 0.5 0.6 3.3 63 Ipon 1pXn 0.0 0.5 0.6 3.3 63 Ipon 1pXn 0.7 7.4 53.7 0.2 1 Ipon 87.1 8.9 2.2 1.8 0		õ					
1p0n 1p1n 1pXn 3p0n 3p1 1p0n 1p1n 1pXn 3p0n 3p1 True Tau Decay M 1p0n 0.0 0.5 0.6 3.3 6 1p1n 0.0 0.5 0.6 3.3 6 1p2n 0.1 0.2 0.1 93.5 3 1p1n 12.2 83.0 43.4 1.3 3 1p0n 87.1 8.9 2.2 1.8 0	ഷ് _{1p0n}		80.9	10.5	2.8	1.2	0.4
and and an analysis ATLAS Simulation Internal Diagonal: 79.5 and analysis ATLAS Simulation Internal Diagonal: 79.5 big app app app app app app app app app ap			1p0n	1p1n	1pXn	3p0n	3pXn
ATLAS Simulation Internal Diagonal: 79.9 Vega 3pXn 0.0 0.5 0.6 3.3 60 Per 3p0n 0.1 0.2 0.1 93.5 3 00 1pXn 0.7 7.4 53.7 0.2 1 1p1n 12.2 83.0 43.4 1.3 3 1p0n 87.1 8.9 2.2 1.8 0					True ⁻	Tau Deca	ay Mode
No 0.0 0.5 0.6 3.3 64 No 0.1 0.2 0.1 93.5 33 No 1pXn 0.7 7.4 53.7 0.2 1 1p1n 12.2 83.0 43.4 1.3 33 1p0n 87.1 8.9 2.2 1.8 00	Mode		ATLAS	Simulation I	nternal	Diagona E	l: 79.5% fficiency
R3p0n0.10.20.193.53Q1pXn0.77.453.70.211p1n12.283.043.41.331p0n87.18.92.21.80	Decay	3pXn	0.0	0.5	0.6	3.3	63.2
0.7 7.4 53.7 0.2 1 1p1n 12.2 83.0 43.4 1.3 3 1p0n 87.1 8.9 2.2 1.8 0	Tau I	3p0n	0.1	0.2	0.1	93.5	31.5
1p1n 12.2 83.0 43.4 1.3 3 1p0n 87.1 8.9 2.2 1.8 0	Reco	1pXn	0.7	7.4	53.7	0.2	1.2
1p0n 87.1 8.9 2.2 1.8 C		1p1n	12.2	83.0	43.4	1.3	3.3
		1p0n	87.1	8.9	2.2	1.8	0.8
1p0n 1p1n 1pXn 3p0n 3p		_	1p0n	1p1n	1pXn	3p0n	3pXn

ATLAS Simulation Internal

0.6

0.1

11.3

77.5

0.6

0.1

40.2

56.4

True Tau Decay Mode

RNN

Performance of RNN vs BDT

Performance of RNN vs BDT

Deep Sets: Brief Intoduction

- Developed by Machine learning community:
 - Paper | GitHub
- To handle to case when the inputs (or outputs) are permutation invariant and have variable size.
- Collision events have the similar properties.
- Current algorithms do not work well with them:
 - DNNs: inputs have fixed size.
 - RNNs: have to define the order of the sequences
- Deep Sets in HEP
 - Energy Flow Networks: Paper
 - Jet flavour tagging: RNNIP

Deep Sets: Invariant model

- Theorem:
 - A function f(X) operating on a set X is invariant to the permutation of instances in X, iff it can be decomposed in the form $\rho(\Sigma \phi(x))$, summing over element x in set X, with suitable transformation ϕ and ρ .
- Network Architecture
 - $x \rightarrow$ representation $\phi(x)$ by ϕ network.
 - The representations are added up (SumLayer)
 - Then the sum is processed by ho network.

There are also equivariant models,. in which all layers are equivariant to the permutations of *x*. Here only consider invariant model.

Deep Sets Model

- Each PFO/track set is represented by $f(x)=\rho(\Sigma \phi(x))$, then passed to a batch normalisation layer and then merged.
- ~45k parameters in total. Training history much similar like RNN.

;; Number of nodes roughly optimised by RandomSearch using KerasTuner package

20/3/30

TDD= TimeDistributed+Dense 15

Performance of DSN

20/3/30

Performance of DSN vs RNN

Performance of DSN vs RNN

Summary

- Overtraining issue:
 - Mitigated by simplifying the model and tuning the LR schedule
 - The performance doesn't get worse.
 - Better than last time but still need some investigate.
- Rough hyper-parameter scan was attempted for RNN (and DSN)
- Evaluate on medium BDT ID taus shows better result
- Can use up to 300GeV taus for training (or remove the pt requirement?)
- Performance are evaluated using THOR/LOKI. Networks are inferred by LWTNN.
- RNN is compared with BDT:
 - Better performance for all mode
- RNN is compared with DSN:
 - Consistent behaviour.
 - DSN slightly outperforms. Needs double-check.

Backup