LumiCal Design Options

2020.04.15 15:00 indico.ihep.ac.cn/event/11684/

Suen Hou Academia Sinica

RING CENTER

Outline

BHLUMI : Bhabha cross section

boost by beam crossing, small beam pipe $\theta < 30 \text{ mRad} \Rightarrow \sigma(Bhabha) > \sim 50 \text{ nb}$ OVAL beampipe to opmitize coverage

• GEANT : intrinsic spatial resolution

beampipe cone shape beampipe tube shape

LumiDET : beampipe r, flange z → θ < 30 mRad Inner-Det Si volume : wafer surrounding beampipe beampipe Flange : Si disks Q-pole front : calorimeter : LYSO 2x2 mm² bars outgoing beampipe : Far-Forward Tagger

Luminosity measurement

- *Reference to Z*-lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$
- Luminosity of e⁺e⁻ collisions
 by measuring Bhabha elastics scattering

 $e^+e^- \rightarrow e^+e^-$

QED process, theoretical < 0.1% precision

triggering on a pair of scattered e⁺e⁻

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}} \quad \sigma = \frac{16\pi\alpha^2}{s} \cdot \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2}\right)$$

$$LO \\ \text{diagrams} \qquad \qquad \overbrace{e^+}^{e^-} \quad \overbrace{e^+}^{Z,\gamma} \quad \overbrace{e^-}^{e^+} \quad \overbrace{Z,\gamma}^{V,\gamma} \quad \overbrace{e^+}^{V,\gamma} \quad \overbrace$$

Luminosity precision

Bhabha detection

- $e^+e^- \rightarrow e^+e^-$ elastics scattering *Event signature* 1. $E(e^{\pm}) = E_{beam}$
 - 2. e^+ , e^- Back-to-Back

• NLO $e^+e^- \rightarrow e^+e^-\gamma$

~1% events

- 1. e⁺, e[−] approximately Back-to-Back
- 2. one electron $E' < E_{beam}$
- 3. Detector e/γ ID, spatial resolution

Study with BHLUMI

- \circ scattered eeg distribution
- o cross section
- 33 mRad beam crossing
 - \rightarrow boosted eeg distribution

BHLUMI theoretical precision

Bhlumi 4.04 writeup: CERN-TH/96-158

cds.cern.ch/record/310621/files/th-96-158.ps.gz http://cern.ch/~jadach/public/Bhlumi-linux-4.04-export_2002.11.05.tar.gz

Theory uncertainty: 0.25% was **BHLUMI 2**, reported in CPC package paper *http://inspirehep.net/record/321226?ln=en* **The latest BHLUMI 4 report is pushed to < 0.1%**

BHLUMI calculations

0.1

Reproduce BHLUMI to 0.1%

Bhlumi-linux-4.04-export_2002.11.05.tar.gz

Compiled by g77 on SL6, demo.f produce numbers as in paper

CERN-TH/96-158

BARE1: .024<θ₁', θ₂' <.058 s'>0.5s

0.1000 0	1.20200	JOL 103 7	00000				
Xsec_BARE1	= 1	169.1952	20371	Nanob.			
error	=	0.674	81969	Nanob.			
Xsec_CALO2	= 1	136.218	81786	Nanob.			
error	=	0.641	51939	Nanob.			
uen@henui07	34•~Zuic	nrk/hhli	umi/ce	anc/dom	20		

LEP workshop95 on Bhabha established 0.1% precision

Hep-ph/9602393

demo.f
1000000 ev
KeyPia=0, KeyZet=0
CMS = 92.3 GeV
Xsec_BARE1 = 162.5295 Nanob.
Error = 0.2061 Nanob.

Table 14: Monte Carlo results for the symmetric Wide-Wide ES's BARE1, for matrix elements beyond first order. Z exchange, up-down interference switched off. The center of mass energy is $\sqrt{s} = 92.3$ GeV. Not available x

Hep-ph/9602393

z_{min}	BHLUMI [nb]	
.100	$166.892\pm.006$	
.300	$165.374\pm.006$	
.500	$162.530\pm.006$	
.700	$155.668\pm.006$	
.900	$137.342 \pm .006$	

CEPC beam crossing

Bhabha back-to-back boosted by 33 mRad beam crossing

- Bhlumi electrons boosted for the 33 beam crossing by ~16.5 mRad to +x direction
- Compared for Bhabha selection conditions

Bhabha X sec. vs Lab z-axis round pipe

- CMS generated th1=10 mRad → boosted +16.5mRad, +X are low angle Bhabha
- Assuming beam pipe is LAB z-axis centered, radius = 30 mRad (r=30mm @z=1m) at x=+30 mm, Bhabha electrons are of θ=13.5 mRad
- → Off beam pipe, detect: one electron (262 nb) / both electrons (74.6 nb) = 3.51
 → Hori. cut +/- 30mm : one electron (51.8 nb) / both electrons (49.1 nb) = 1.05

12

Bhabha X section

Round beam pipe, r= 30 mRad

CMS 10~	′ 80 mRad	LAB detect ONE electron		LAB detect both electrons		
BAI	RE1	off beampipe full phi coverage	off beampipe cut off +30mm	off beampipe full phi coverage	off beampipe cut off +30 mm	
Nevents	457232	102535	20277	29194	19216	
Xsec (nb)	1168.3	262.0	51.81	74.60	49.10	

-2 mRad in radius (r=28 mRad) -2 20% increase in X section

CMS 10~	80 mRad	LAB ONE electron		LAB both electrons		
		off beampipe	off beampipe	off beampipe	off beampipe	
DAI	BARE1	full phi coverage	cut off ±30mm	full phi covearge	cut off ±30mm	
Nevents	457232	135842	24236	34847	23010	
Xsec (nb)	1168.3	347.1	61.93	89.04	58.80	
					13	

Bhabha ONE electron detection w. Far Forward Tagger

Beam crossing: 33 mRad

 \rightarrow Boost off ring center (+x axis)

→ offset 16.5 mRad maximum (electrons on x-z plane)

RING CENTER

one electron detected (+x side) the other electron (-x side) is boosted into beampipe NOT counted for Lumi meassurment

Far Forward Tagger on outgoing pipe → trigger/back-to-back of low angle electrons → < 50 mRad on x-axis lost into beam pipe

BHLUMI study summary

- <u>33 mRad boost</u> to +x direction
 Lab frame asymmetrical coverage
- Bhabha ⊖_{min} ~30 mRad for ~50 nb
 having both back-to-back electrons detected
- OVAL shape Beampipe
 space to LumiDET in y → gain to Bhabha
- F.F tagger to trigger Bhabha
 w. one electron in LumiCal fiducial region

LumiCal in MDI region

Lumi Si wafers before/behind Flange

1st impact Si-wafer <5 um Tracker/preshower layers in flange for Bhabha ID, e/γ separation

LumiCal on Quadruple @z $\sim \pm 1$ m

Bhabha electron shower energy

GEANT studies

- Spatial resolution of electron hits
- Shower leakage to TPC tracking volume (z to ± 2 m)

GEANT simulation for spatial resolution

- A package used for test-beam Si calorimetry study lateral shower spectrum agree with data
- LumiCal in CDR: a SiW sandwich detector no upstream material
- post-CDR: a Cone shape beam pipe
 best spatial resolution
- tube shape beam-pipe
 → spatial resolution
 w. Octagon Si wafers
 surrounding beampipe

New Beam pipe is LAB centered Ji Quan 東流管内方案

内铍管厚度: 0.50 外皮管厚度: 0.35 内外铍管间隙: 0.5 冷却介质:1号电火花油 说明:

1.Ø25和Ø31是根据白莎的计算,最小束流管孔径

- 2.亮度探测器对应管道为单层管(无冷却),
 - 需根据计算确定184mm 是否满足温度要求

Precision on electron impact position

GEANT simulation precision is 0.1 MeV

Si wafer behind beam-pipe cone face, whatever material thickness, Impact position is not effected by multiple scattering/fragmentation

Better than 1 μm

50 GeV electron, shoot LumCal center theta = 40 mRad

50 GeV electron shower vs. angle

Precision on electron impact position

Compare Flange having two 1X0 Tungsten layers OR NOT

GEANT particles of 0.1MeV Hits of shower secondaries on Si layers

Spatial Resolution of piled up hits (50 GeV electrons)

Front 2 Si-layers of Q-pole LumiCal Pileup of shower ~1 mm resolution

Three Si layers at Z>670 mm NO Tungsten layers Spatial resolution ~ 20 μm

1st Si layer behind Beampipe cone at Z=515 mm Hit deviation better than $1 \, \mu m$

-0.2

0.005

-0.005

0

-0.2

-0.1

-0.004 -0.002

0

0

0.1

Z=515 mm

0.002 0.004

dx (mm)

0.2

-0.2

200

100

-0.1

-0.004 -0.002

0

0

0.1

0.002 0.004

dx (mm)

0.2

Spatial Resolution of piled up hits (50 GeV electrons)

Front 2 Si-layers of Q-pole LumiCal Pileup of shower ~1 mm resolution

Three Si layers at Z>670 mm Two 1X0 Tungsten layers behind Si wafers Spatial resolution ~ 20 μm

 $1^{st}\,Si$ layer behind Beampipe cone $% 2^{st}\,Si$ at Z=515 mm Hit deviation better than 1 μm

Beampipe post-CDR

1.Be 的長度為 140mm, Z 範圍-70~70mm。↩

2. 以 IP 單側為例, Be 管及銅管的尺寸見下表及附圖, 真空管相對於 IP 對稱。↩

材料₽	Z範圉 (mm) ↩	内直徑(mm)↩	備註↩	¢
Be₽	<mark>0~70</mark> ₽	284	直管₽	₽
Copper₽	70~200↩	28₽	直管₽	Ð
	200~500₽	28~35₽ ⁰	錐管₽	₽
	500~700₽	35~39₽	錐管,包含波紋管↩	₽

Electron Traversing 2mm Cu pipe \rightarrow very "THICK" in forward direction

GEANT with post-CDR beam-pipe

Flat tube beam-pipe (2020 practice)

acos(.99) = 141.54 mRad @Z=118 \rightarrow r= 16.81 (=tanQ*118) acos(.992)=126.58 mRad @Z=118 → r= 15.02 mm $@Z=118 \rightarrow r= 11.84 \text{ mm} @Z=153 \rightarrow r=15.35 \text{ mm}$ Q= 100mRad

Z=0~115 mm

Z=0~115 mm inner radius 28/2+1 mm 0.35mm thick inner r=28/2+1 mm, 0.35 mm thick

Si octagon wafers surrounding beampipe Si wafer attach to beampipe Impact position w. minimum effect multiple scattering/shower

Position(Hits) – Electron shower

Position(Hits) – Electron shower

LumiCal tracking (CDR proposal)

- IP + Diamond → calibrate Lumi strip position
- Diamond + LumiCal → measure IP size

Calibrate offset of the mean of error at inner radius Silicon strip resolution ~ 5 um, error on mean CAN reach 1 μm, → δL/L ~ 0.01 %

LumiCal tracking

for luminosity $\delta L/L = 10^{-4}$

at z=50 cm, θ = 30 mRad $\rightarrow \delta \vartheta$ = .75 μ Rad or dr = .75 μ m scaling to dz by 1/tan(.030)= 33 \rightarrow dz = 25 μm

Si strip, pitch in Z, 300 μ m thick \rightarrow traversing distance in z = 10 mm Si wafer coverage (30-100 mRad) \rightarrow z range 150 – 500 mm

Assuming Si strip pitch = 100 μ m (fire 100 strips @ 30mRad) resolution is determined by the fraction of entrance strip (low z) → Optimized the pitch vs the 25 um resolution requirement and resolution distraction for the error on mean

LYSO + SiPM 2x2 mm² strips

Octagon Si-wafers

Radius 15 mm

surrounding/beampipe/

Far-forward tagger

Bhabha scattered electrons

Symmetric to out-going beam-pipe, NOT the LAB frame

→ hit @ +x Lab frame : ϑ_{cms} is 16.5 mRad lower

LumiCal @ Lab +x region is VERY HOT by low θ beam electrons tag Bhabha electrons by far-forward tagger back-to-back in θ/φ to LumiCal hit

Detector option: LYSO+SiPM in a ring, slide to position

Far-forward tagger

Luminosity, Bhabha 測量條件:

- 1. back-to-back colliding electrons
- 2. Electron(+ISR photon) = Ebeam
- 3. 截面 > Z(qq) at Z-pole, 41 nb

LumiCal challenge :

- 1. Beampipe 限制 θmin = 30 mRad
- 2. Beam crossing, x-axis θ min = θ min +33/2 mrad
 - → -x 方向 electron 被推進 beampipe, 截面 減少 1/3
- → Bhabha 截面 > 41 nb 有困難

LumiCal 設計限制

- 1. Inner Tube, @z= 500 mm, Cone beampipe 法藍之間, 沒有材料阻檔,最乾淨的 Bhabha
 - → 不能放Calo, 會導致 shower background to tracker
- 2. Q-pole front, @z=1000 mm, 前端有beampipe 材料,
 → full Calo, 量 electron Ebeam, Bhabha Theta 模糊
- 3. Q-pole Outgoing beampipe, @ Z>2000 mm beam monitoring, 測量小角度 Bhabha, 閃鑠體, 包覆約2cm厚 2~5cm長, phi 細分割,標定 beam electron
 → 在前端單管時, -x 方向被boost 進 beampipe Bhabha, 分管後能被 trigger 以 back-to-back coincident, 另一端 "single electron Bhabha" 是精密測量到的 這些 Bbabha, 是 33mRad 丟失掉的 1/3事例截面

Recover "Single Electron Bhabha" with Far-forward LumiMonitor

Backup RING CENTER

