

~ 中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

High-granularity Crystal Calorimeter: R&D status

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

CEPC Day, May 8, 2020

Motivations

- Background: future lepton colliders (e.g. CEPC)
 - Precision measurements with Higgs and Z/W
- Why crystal calorimeter?
 - Homogeneous structure
 - Optimal intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Energy recovery of electrons: to improve Higgs recoil mass
 - Corrections to the Bremsstrahlung of electrons
 - Capability to trigger with a single photon
 - Flavour physics at Z-pole
 - Potentials in search of new physics, ...
- Fine segmentation
 - PFA capability for precision measurements of jets

High-granularity crystal ECAL

- Plenty of room for broad collaborations
 - New ideas proposed and discussed in a dedicated <u>CEPC calorimetry</u> workshop in March 2019
 - Key issues and technical challenges: listed and needs further iterations
- R&D activities: recent progress since previous CEPC Day
 - Crystal granularity optimisation: longitudinal depth, lateral segmentation
 - Dynamic range studies
 - Readout electronics: tests with KLauS ASIC

Key issues and technical challenges (reminder)

• Key issues: optimization

- Crystal options: BGO, PWO, etc.
- Segmentation: in longitudinal and lateral directions
- Performance: single particles and jets with PFA
- Impacts from dead materials: upstream, services (cabling, cooling)
- Fine timing information, dual-gated readout, etc.

• ...

- Key issues: technical challenges
 - Front-end electronics
 - Power consumption and cooling options
 - Calibration and monitoring systems
 - Scalable detector design: modules and mass assembly
 - Mechanics
 - ...
- Need further iterations and discussions

Crystal cell optimisations

- Crystal longitudinal depth
 - Use shower profiles in segmented layers to correct for tails (energy leakage)
 - Aim for shorter crystal depth (cost), balance with performance (correction precision)
- Crystal transverse segmentation
 - Crystal transverse size: separation of neutral pions and photons

Chunxiu Liu (IHEP)

Crystal longitudinal depth optimisation

Chunxiu Liu (IHEP)

- Energy leakage correction using longitudinal shower profile
 - Based on the fine segmentation in crystal length
 - Shower profile function can not well describe the shower tails; needs fine tuning

Crystal longitudinal depth optimisation

Chunxiu Liu (IHEP)

• Merits

- Cost saving with shorter crystal depth
- Potentials for energy loss corrections in solenoid magnet between ECAL and HCAL (as an alternative detector option being investigated)

Crystal transverse size optimisation

Chunxiu Liu (IHEP)

- Study of the separation performance of γ and merged π^0
 - Can not be distinguished in transverse shower profiles
- Energy-related variables defined for TMVA
 - S1/S4, S1/S9, S1/S25, S9/S25, S4/S9, F9, F16

Crystal transverse size optimisation

Chunxiu Liu (IHEP)

• Separation performance of the 40GeV γ and merged π^0

Transverse size 1x1cm2

Transverse size 2x2cm2

100% separation with most variables

100% separation with S1/S4, S1/S25 and F9

Crystal cells: dynamic range (reminder)

- Silicon Photomultiplier (SiPM)
 - Non-linear response due to finite #pixels (each as a binary counter)
- Crystal such as BGO produces (too) many photons
 - Stringent requirement on the readout: response linearity

Dynamic range: simulation with high-energy electrons

- Maximum energy deposition per cell
 - Depends on the crystal segmentation configurations
 - Provide inputs for the SiPM and its readout electronics

Crystal cells: dynamic range

- Geant4 full simulation of TOT with BGO crystals
 - Realistic simulation of BGO scintillation: detailed properties
 - 8200 photons/MeV, time constants tau1=60ns, tau2=300ns
 - TOT: time duration of the rising and trailing edges at a fixed threshold

Computing intensive for the simulation (>1M photons); techniques developed to fasten the procedure

Dynamic range: TOT simulations

- Energy depositions in a crystal cell: 10MeV 8 GeV
 - TOT values will go beyond 1.5 μs for energy deposition larger than 8 GeV
 - Energy spread: fluctuations due to BGO scintillation long slow slope
 - Impact from TOT threshold will be studied

Dynamic range: TOT measurements

Zhigang Wang (IHEP)

- First TOT tests with UV-LED for BGO-SiPM readout
 - Preliminary: a few percent resolution achieved in the range 1-350 MIPs

Front-end electronics for SiPM readout

U. Heidelberg, IHEP

- ASIC "KLauS", developed within CALICE
 - Designed by U. Heidelberg (KIP)
 - Originally for CALICE scintillator-SiPM HCAL (AHCAL)
 - Promising candidate: 36-channel, low-power chip
 - Excellent S/N ratio: stringently required by high-dynamic SiPMs (small pixels)
 - Continuous working mode: crucial for circular colliders (no power pulsing)
 - Need to quantitatively verify its performance and power consumption

Wire-bonded Klaus5 chip

Front-end electronics for SiPM readout

- Test boards for KLauS-5 in BGA
 - Boards produced after several iterations of designs/debugging
 - Boards tested first at Heidelberg and later at IHEP
 - Synergies with the JUNO-TAO

U. Heidelberg, IHEP

Klaus5: first tests with NDL-SiPM

U. Heidelberg, IHEP

- NDL-SiPM: from a Chinese vendor
 - Features: small pixel pitch (10µm or smaller) and high PDE
 - Need high S/N ratio in electronics to resolve single photons (small gain)

Klaus5: tests with charge injection

- Pulses injected to all 36 channels
 - Varying input capacitors on adapter PCBs
 - Varying pulse voltages from a pulse generator

Klaus5: tests with charge injection

- Large amounts of data taken, to be analyzed to evaluate...
 - Dynamic range: different working modes of gains
 - Dead time when all channels are fed with data

5V pulse input in Low Gain mode

Summary

- High-granularity crystal ECAL: steady R&D progress
 - Crystal granularity optimisation
 - Crystal depth, pi0/gamma separation power
 - Dynamic range: requirements and TOT technique studies
 - SiPM readout ASIC within CALICE
 - Characterisations with pulse injection
- Collaborations with US teams
 - Exchanges of ideas, R&D work, plans and technical discussions
 - A separate status talk summarized by Marco Lucchini (Princeton U.)

Thank you!

Backup slides

Separation Performance of 2γ 's from high energy π^0 decay

- Convert the θ_{min} into the cell numbers at θ =90° for CEPC with R=1.835m and the cell size 10mm
- One crystal has the maximum angle~ 0.31224° at θ =90° in barrel

 θ_{min} of two gammas from π^0 decay

cell Numbers at θ =90degree for CEPC with Radius(1.835m) and cell size 10mm

Separation Performance of 2γ 's from high energy π^0 decay

- $\pi^{\rm 0}$ decay events with the small opening angle selected
- Two types of π⁰ events in ECAL reconstruction
 > "Resolved" π⁰ from a pair of photons in two clusters
 > "Merged" π⁰ from a single cluster
- Use 40 GeV π^0 samples

	π ⁰ Momentum	Cell 1x1cm ²	Cell2x2cm ²
Resolved π^0	30GeV	~100%	0%
	40GeV	~60%	0%
Merged π^0	30GeV	0%	100%
	40GeV	~40%	100%

2020/5/6

Separation Performance of 2γ 's from high energy π^0 decay

• Cell 2x2x3cm³ 1st layer

Separation performance of the 40GeV γ and merged π^0

• Cell 2x2x3cm³ 2nd layer

Separation performance of the 40GeV γ and merged π^0

• Cell 2x2x3cm³ 3rd layer

Separation performance of the 40GeV γ and merged π^0

• Cell 2x2x3cm³ 4th layer

