# **Overview of Detector R&D Projects**

# **Response to International Detector R&D Committee**

## João Guimarães da Costa (for the Physics and Detector Working Group)



Institute of High Energy Physics Chinese Academy of Sciences

中国科学院高能物理研究所

CEPC Day Beijing, May 08, 2020



## **IDRC Request:**

## Goal: Clarify the R&D activities on-going within the CEPC Detector Project

- 1. The project leadership and IDRC should assemble a coherent list of R&D activities, such that the presence of gaps and overlaps can be determined and addressed
- 2. Each current R&D project should provide, key information to the IDRC: • The objectives of the project
  - The anticipated schedule on which the objectives will be met The funding available to the project, and the leadership arrangements within it The extent to which the project is a CEPC-specific development

### We added:

 Manpower resources available for the project, including type (student, faculty, engineer, etc) and FTE





## Detector R&D Tasks Arrangement

- 1 Vertex
- 2 Tracker
- 2.1 TPC
- 2.2 Silicon Tracker
- 2.3 Drift Chamber
- 3 Calorimeter
- 3.1 ECAL Calorimeter
- 3.2 HCAL Calorimeter
- 3.3 DR Calorimeter
- 4 Muon Detector
- 5 Solenoid
- 6 MDI
- **7 TDAQ**
- 8 Software and Computing

#### **Detector R&D sub-projects** identified and numbered accordingly

**R&D** tasks created under these tasks

Sub-group conveners and other detector R&D proponents were asked to compile documents with required information





## Word document template:

## **CEPC Detector R&D Project** 1.1 Vertex Prototype

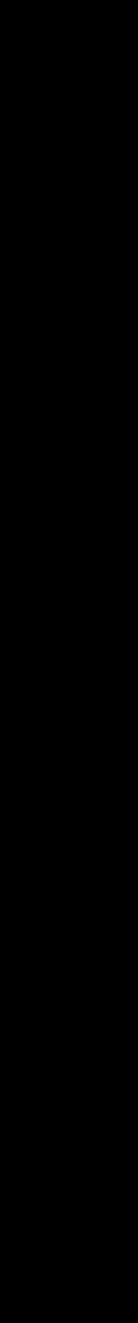
| Document Responsible: |
|-----------------------|
| Last saved by on      |
| Revision number:      |
|                       |

#### Change history

| Revision | When       | What changed and why                       |
|----------|------------|--------------------------------------------|
| 1        | 12/12/2019 | First draft                                |
|          |            |                                            |
|          |            |                                            |
|          |            | < Add further lines to table as required > |

#### **Readme first**

- i. Please do not delete or modify this section or its structure.
- ii. Only change text enclosed by (and including) angled brackets "< ... >".
- similar)
  - Ο
  - 0 should be changed in Document:Custom: PBS.
- v. Finally, remember to update the <u>Change History</u>.


| Joao Guimaraes da Costa |  |
|-------------------------|--|
| 12/13/19 5:19:00 AM     |  |
| 1                       |  |
|                         |  |

iii. Don't change field directly, instead modify the document options, under File -> Properties (or

Enter name of person that wrote the document in Document:Summary: Author The project ID number, should follow the rules provided to you earlier. The number

• The project name should be changed in Document: Summary: Subject.

iv. In Section <u>Project Objectives</u> provide a brief description of the project goals, i.e. why and what is being produced, for PBS item **1.1 Vertex Prototype**. If this project includes identifiable subprojects you can indicate them in the <u>Sub-projects Description</u> Section, otherwise submit a separate document for each of them. The sub-project IDs are free for you to define.



## Word document template:

#### 1.1 Vertex Prototype: Project Objectives

<Include a short description of the goals of the project>

#### 1.1 Vertex Prototype: Sub-projects Description

| Project ID | Title                 | Description                                                                                  |
|------------|-----------------------|----------------------------------------------------------------------------------------------|
| 1.1.1      | Pixel sensor R&D      |                                                                                              |
| 1.1.1.1    | CMOS pixel sensor R&D |                                                                                              |
| 1.1.1.1.1  | Full size CMOS sensor | Full size CMOS pixel sensor with full functionality to<br>be used in a pixel vertex detector |
| 1.1.1.1.2  | MOST1 CMOS sensor     | MOST 1 CMOS R&D                                                                              |
| 1.1.1.2    | SOI pixel sensor R&D  |                                                                                              |
| 1.1.2      | Low-mass ladder       | Ladder with low mass to satisfy CEPC requirements                                            |
| 1.1.3      | Mechanical structure  | Low-mass mechanical structure for pixel detector                                             |
|            |                       |                                                                                              |
|            |                       | < Add further lines to table as required >                                                   |

#### 1.1 Vertex Prototype: CEPC Relationship

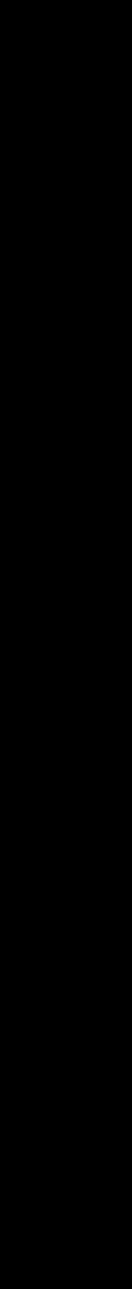
<Indicate to what extent this project is a CEPC-specific development.>

#### 1.1 Vertex Prototype: Project Schedule

<Enter a rough schedule for the project, indicating the ultimate schedule goal for when the objectives will be met, and some intermediate steps if found important.>

#### 1.1 Vertex Prototype: Funding Availability

<Short statement about the funding sources and amount of funding available. If no funding yet, please indicate that. Indicate if funding is enough or more funds are desirable.>


#### 1.1 Vertex Prototype: Leadership Arrangement

<Indicate who is leading the project and the leadership arrangement within the project. Should identify names and institutions.>

#### 1.1 Vertex Prototype: Manpower Resources

< Briefly summarize the manpower resources available for the project, including type (student, faculty, engineer, etc.) and FTEs for each type. >

| Туре      | Average FTE Expected |
|-----------|----------------------|
| Faculty   |                      |
| Postdoc   |                      |
| Students  |                      |
| Engineers |                      |





## Preliminary Documents:

#### **CEPC Detector R&D Project** 2.1 TPC Module and Prototype

| Document Responsible: | Qihurong            |
|-----------------------|---------------------|
| Last saved by on      | 12/18/19 6:40:00 AM |
| Revision number:      | 1                   |
|                       |                     |

#### **CEPC Detector R&D Project** 3.3 Dual-readout Calorimeter

| Document Responsible:            | Roberto Ferrari      |
|----------------------------------|----------------------|
| Last saved by Roberto Ferrari on | 17/12/19 08:00:00 PM |
| Revision number:                 | 1                    |
|                                  |                      |

#### **CEPC Detector R&D Project** 2.2 Silicon Tracker Prototype

| Document Responsibl |
|---------------------|
| Last saved by on    |
| Revision number:    |
|                     |

#### **CEPC Detector R&D Project** 4.1 Scintillator-based Muon Detector Prototype

| Document Responsible: | Xiaolong Wang, Liang Li |
|-----------------------|-------------------------|
| Last saved by on      | 12/18/19 3:15:00 AM     |
| Revision number:      | 1                       |
|                       |                         |

#### **CEPC Detector R&D Project** 5.1 LTS solenoid magnet

|   | Document Responsible: | Zhu Zian            |  |
|---|-----------------------|---------------------|--|
|   | Last saved by on      | 12/18/19 1:40:00 AM |  |
| Γ | Revision number:      | 1                   |  |
|   |                       |                     |  |
|   |                       |                     |  |



| Document Responsib |
|--------------------|
| Last saved by on   |
| Revision number:   |
|                    |

## 17 documents

| e: | Harald Fox, Meng Wang |
|----|-----------------------|
|    | 12/29/19 10:42:00 AM  |
|    | 1                     |
|    |                       |

#### **CEPC** Detector R&D Project 3.1.1 Crystal Calorimeter

| ÷ |                           |                     |  |  |
|---|---------------------------|---------------------|--|--|
|   | Document Responsible:     | Yong Liu            |  |  |
|   | Last saved by Yong Liu on | 12/30/19 5:56:00 AM |  |  |
|   | Revision number:          | 1                   |  |  |
|   |                           |                     |  |  |

#### **CEPC Detector R&D Project** 4.2 muRWell detectors

| Document Responsible:                       | Paolo Giacomelli     |
|---------------------------------------------|----------------------|
| Last saved by Joao Guimaraes da<br>Costa on | 12/30/19 12:23:00 AM |
| Revision number:                            | 1                    |
|                                             |                      |

#### **CEPC Detector R&D Project** 5.2 HTS solenoid magnet

| ole: | Zhu Zian            |
|------|---------------------|
|      | 12/18/19 1:41:00 AM |
|      | 1                   |
|      |                     |

#### **CEPC Detector R&D Project** 6.2 Interaction Region Mechanics

| Document Responsible: | Microsoft Office User |
|-----------------------|-----------------------|
| Last saved by on      | 12/18/19 11:08:00 AM  |
| Revision number:      | 1                     |
|                       |                       |









# A couple of examples: HTS Solenoid

#### 5.2 HTS solenoid magnet: Project Objectives

A large HTS solenoid concept is proposed by IHEP team for the CEPC detector, with the calorimeter located outside of the solenoid, which requires a very thin solenoid.

The HTS solenoid is supposed to use YBCO stacked-tape cable as the conductor. The radiation length of single YBCO tape coated with 10 µm copper is about 0.004 X0, we can get a thinner solenoid by using HTS compare to LTS. Therefore, the YBCO stacked-tape cable and the cryogenics are brought into R&D. Up to 20% additional reduction in the overall thickness may be achieved with more R&D and engineering.

The objectives of the detector magnet R&D projects are relative to the four different tasks listed as follows.

#### 5.2 HTS solenoid magnet: Sub-projects Description

| Sub-project ID | Title                                                     | Description                                                                                                                                                                                                                     |
|----------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.2.1          | Development of HTS conductor                              | Develop aluminum stabilized ReBCO stacked to<br>cable, the tapes are embedded in a pure alumin<br>cable length > 200 m, current > 6 kA at 20 K. We<br>consider other HTS cables if they are suitable for la<br>detector magnet. |
| 5.2.2          | Development of 20 K cooling for HTS coil                  | Explore the cooling mechanism and heat conduct<br>structure at 20 K, study the stability and que<br>behavior at this temperature.                                                                                               |
| 5.2.3          | Development of low material cryostat                      | Study the cryostat structure with less mass mate<br>to make particles more easily penetrate to reach<br>calorimeter.                                                                                                            |
| 5.2.4          | Construction of 1:20<br>superconducting coil<br>prototype | Develop the prototype of large HTS magnet, study<br>winding process, cable joint, quench protection<br>so on, with an inner diameter 2m, 4.2K liquid hel<br>cooling, stack cable 4mm width 20 layers.                           |
|                |                                                           | < Add further lines to table as required >                                                                                                                                                                                      |

#### 5.2 HTS solenoid magnet: CEPC Relationship

All four activities are strictly (almost exclusively) related to the design of the solenoid magnet of the CEPC detector.

tape num, also arge

tivity ench

terial h the

ly the and elium

#### 5.2 HTS solenoid magnet: Project Schedule

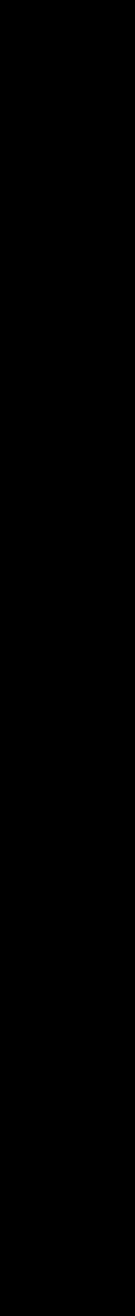
Project 5.2.1 and 5.2.4 got funding from the Chinese Academy of Sciences Foundation for original innovation project from 0 to 1, research focus on the key technology of high temperature superconducting magnet for large detector in the future. It was expected to complete the project by the end of 2024.

Project 5.2.2 and 5.2.3 have to get new funding support, activity is expected to start in 2023, we expect to master all aspects of the technology of large-scale HTS detector magnet and complete the project by the end of 2026.

#### 5.2 HTS solenoid magnet: Funding Availability

We have obtained 3M CNY from the Chinese Academy of Sciences Foundation for original innovation project from 0 to 1, for the key technology of high temperature superconducting magnet for large detector in the future, mainly focus on the research described in the first and second step of project 5.2.1 and 5.2.2.

We are missing the funds needed for the low material cryostat study described in the third and fourth step of project 5.2.3 and 5.2.4.


#### 5.2 HTS solenoid magnet: Leadership Arrangement

Leading institute for the HTS solenoid magnet project will be Institute of High Energy Physics, CAS (coordinated by Ning Feipeng).

Significant support will be given by the industrial companies, Toly Electric Works Co. LTD at Wuxi (coordinated by Liao <u>He'an) and</u> Shanghai Superconductor Technology Co. Ltd at Shanghai (coordinated by Zhu Jiamin) for what concerns high temperature superconducting cable development. Cooperation partners for simulations and finite element analysis of the cable and coil are under investigation.

#### 5.2 HTS solenoid magnet: Manpower Resources

| Туре       | Average FTE Expected |
|------------|----------------------|
| 5 Faculty  | 2                    |
| 1 Postdoc  | 0.5                  |
| 4 Students | 2                    |
| 1 Engineer | 0.5                  |

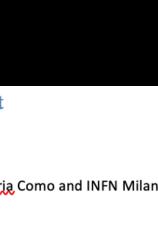




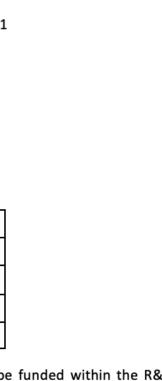
## A couple of examples: Dual Readout Calorimeter

#### 3.3 Dual-readout Calorimeter: Project Objectives

The 20-year-long experimental research program on dual-readout calorimetry of the DREAM/RD52 collaboration has yielded a technology that is mature for application at CEPC. The results show that the parallel, independent, readout of scintillation and Cerenkov light, makes it possible to cancel the effects of the fluctuations of the electromagnetic fraction in hadronic showers, heavily affecting the energy resolution of the present calorimetry technologies. In conjunction with high-resolution em and hadronic energy measurements, excellent standalone particle-ID capability was demonstrated as well.


Those results strongly support the conviction that a matrix of alternating scintillating and clear fibres, inserted in copper or lead strips and readout by Silicon PhotoMultipliers (SiPMs), will be able to provide performance more than adequate for the physics program at the CEPC collider. A pointing geometry may allow for unprecedented transverse sampling granularity. Photon pairs could be identified and reconstructed down to a separation of less than 1 cm. Moreover, timing measurements should provide the capability to reconstruct the longitudinal shower development position. A 100 ps time resolution should result in a position resolution of about 5 cm.

The objectives of the R&D projects are relative to the four different tasks listed as follows.


#### 3.3 Dual-readout Calorimeter: Sub-projects Description

| Project<br>ID | Title     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.3.1         | Mechanics | In order to arrive to an executive design and engineering drawings of a realistic detector, the following issues need to be clarified:<br>a) dimensions and construction method of the building elements of the absorber structure;<br>b) the procedure for the assembly of single towers;<br>c) the definition of a sensible breakdown of a full coverage $4\pi$ geometry.<br>All depends on the choice of the absorber material, one among brass and iron being, at present, the baseline.<br>The gluing of capillary tubes seems to be a viable solution for the construction of $\Omega(10 \times 10 \text{ cm}^2)$ modules and an R&D grogramme in this direction is ongoing, with fundings from INFN, University of Sussex and RBI. A 1 m long single (brass) module will be built, in the next months, to be tested at DESY. A beam period was allocated at the end of 2020 but, following the COVID-19 crisis, the schedule needs to be revised as soon as possible.<br>In parallel, a 3-year R&D project will be submitted during next year for the construction of a "hadronic-size" prototype as well as for addressing the issues related to the construction of projective modules (including engineering drawings of a possible $4\pi$ detector). |

|   |                                                                                                                                  |                                                                                                                                                                                                                              | In February 2020, the National Research Foundation of Korea (NRF) granted a 5-year funding of about 2M USD for building a full-scale "hadronic-size" projective prototype                                         |                                                                                                                                                                                                                                               | Dete colortion and                                                 | 6. Identification and reconstruction of final states from<br>Z/W/H→jj, H→ZZ*/WW*→4j, H→yy, Z/H→tt decays.                                                                               | 3.3 Dual-readou                                                                                                                                                                                                                                 | t Calorimeter:                                                                                                                                | Leadership Arrangement                | t                      |
|---|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
|   | 3.3.2                                                                                                                            | Fibres and optical elements                                                                                                                                                                                                  | The fibre selection needs to target the proper tuning of light collection yield and attenuation-length properties. Since                                                                                          | 3.3.5                                                                                                                                                                                                                                         | Data selection and<br>processing with deep-<br>learning algorithms | Development of deep-learning algorithms (over convolutional<br>neural networks) exploiting timing information, for online and<br>offline data selection and processing. The performance | Project leader:                                                                                                                                                                                                                                 | Roberto Fe                                                                                                                                    | errari INFN Pavia                     |                        |
| 1 |                                                                                                                                  |                                                                                                                                                                                                                              | scintillating and <u>Čerenkov</u> light production processes have yields<br>that differ by orders of magnitude, the transmission chain<br>critically needs to tackle possible optical cross-talk of scintillation |                                                                                                                                                                                                                                               |                                                                    | assessment will concern the same final states as in task 3.3.4.                                                                                                                         | Technical coordinato                                                                                                                                                                                                                            | r: <u>Romualdo</u>                                                                                                                            | Santoro <u>Università dell'Insubr</u> | ia Como and INFN Milan |
| 1 |                                                                                                                                  |                                                                                                                                                                                                                              | in <u>Čerenkov</u> signals. A suitable choice of core material, numerical aperture (i.e. cladding structure) and light filtering, properly                                                                        | 3.3 Dual-1                                                                                                                                                                                                                                    | readout Calorimeter: C                                             | CEPC Relationship                                                                                                                                                                       | Group leaders/contacts:                                                                                                                                                                                                                         |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | matched with the sensor PDE, should allow to obtain a yield of ~100-400 g.e./GeV, with manageable attenuation-length effects. Qualification of fibres, optical coupling and light sensors                         |                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | Long Yoo, South Korea Consortium (Kyungpook National University, Korea<br>University of Seoul, Yonsei University, includes also Iowa State Un |                                       |                        |
| ╞ |                                                                                                                                  | Light sensors and                                                                                                                                                                                                            | A SiPM-based readout provide several advantages; no fibres                                                                                                                                                        | of the IDEA d                                                                                                                                                                                                                                 | etector concept. IDEA is inclu                                     | n integral part of the program for the calorimeter system<br>ded in the CDRs of both high-energy circular ete <sup>-</sup> colliders                                                    |                                                                                                                                                                                                                                                 | Università dell'Insubria Como and INFN Milano<br>INFN <u>Pavia</u><br>INFN Pisa                                                               |                                       |                        |
|   | 3.3.3                                                                                                                            | readout electronics                                                                                                                                                                                                          | sticking out (i.e. no tail oversampling), operation in magnetic                                                                                                                                                   | presently un                                                                                                                                                                                                                                  | der discussion: CEPC in Chin                                       | a and FCC-ee at CERN. The R&D is the same for both                                                                                                                                      | Gabriella Gaudio                                                                                                                                                                                                                                |                                                                                                                                               |                                       |                        |
| 5 |                                                                                                                                  |                                                                                                                                                                                                                              | readout granularity. On the other hand, being digital detectors,                                                                                                                                                  | colliders.                                                                                                                                                                                                                                    |                                                                    |                                                                                                                                                                                         | Franco Bedeschi                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   | SiPMs may show saturation, non-linearity, after pulsing, cross-<br>talk. The R&D program will address these points with a market |                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                         | Stefano Giagu                                                                                                                                                                                                                                   |                                                                                                                                               | a "La Sapienza" and INFN Roma 1       | L                      |
|   |                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                               | readout Calorimeter: P                                             | roject Schedule                                                                                                                                                                         | Paolo Giacomelli                                                                                                                                                                                                                                | INFN Bologna                                                                                                                                  |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | high-density sensors (small cell size). This is a requirement also<br>in the case that we need to guarantee a linear response. Indeed,                                                                            |                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | University of Sussex<br>RBI Zagreb                                                                                                            |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | to reduce the huge number of readout elements, the analog                                                                                                                                                         | in the initial planning, all the tasks were meant to be completed by 2024. The prototype under                                                                                                                                                |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | KBI Zagreb                                                                                                                                    |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | to apply non-linearity corrections.                                                                                                                                                                               | preparation was planned to be tested at DESY by the end of 2020. At the time of writing, due to the present COVID-19 emergency, no solid statement on the date can be done. The test beam period is                                           |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | tested with specific efforts for the assessment and optimisation                                                                                                                                                  | expected to be postponed (probably to 2021). Further planning, including the schedule for the 3.3 Dual-readout Calorimeter: Manpower Resources and on the prototype, will need to be reassessed as soon as possible. At present, the delay is |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | of the uming performance. The possibility of using a sampling f                                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                    | e other hand, the schedule will depend on the amount of                                                                                                                                 |                                                                                                                                                                                                                                                 | Turne                                                                                                                                         | Augusta FTF Fundated                  |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | with CAEN and, as far as possible, with other producers, will be carried on. Hamamatsu SiRMs, with 15 µm cell pitch, and the                                                                                      | unding and r                                                                                                                                                                                                                                  | resources that will be secured                                     | l.                                                                                                                                                                                      |                                                                                                                                                                                                                                                 | <b>Type</b><br>Faculty                                                                                                                        | Average FTE Expected<br>4.2           |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                   | 3.3 Dual-1                                                                                                                                                                                                                                    | readout Calorimeter: F                                             | unding Availability                                                                                                                                                                     |                                                                                                                                                                                                                                                 | Postdoc                                                                                                                                       | 2.21                                  |                        |
|   | 3.3.4                                                                                                                            | Simulations and                                                                                                                                                                                                              | A complex (Geant4) simulation programme is being pursued in                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | Students                                                                                                                                      | 6.8 <sup>1</sup>                      |                        |
|   |                                                                                                                                  | detector performance                                                                                                                                                                                                         | performance of dual-readout calorimeter implementations.                                                                                                                                                          | -                                                                                                                                                                                                                                             |                                                                    | ototype) has received funding from INFN CSN1 (~40 k€),                                                                                                                                  |                                                                                                                                                                                                                                                 | Engineers                                                                                                                                     | 1.3 <sup>2</sup>                      |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | prototypes, have been and will be simulated for comparison                                                                                                                                                        | from RBI (about 15 k€) and from the University of Sussex (about 5 k€). Small amount of funding from University grants has also been made available.                                                                                           |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 | . The number for students and postdoc includes positions that will be funded w                                                                |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                    | presented for the AIDA++ proposal, mainly thought to be                                                                                                                                 | e project (i.e. for which at present funds are not guaranteed).<br>2. The number of engineers includes technical manpower from institute workshops that are n<br>o engineers but are nevertheless actively participating to the design efforts. |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | 1. Francisco de Maria fan ale de ser anno 1996 de la deserva de                                                                                                                                                   |                                                                                                                                                                                                                                               | ng young manpower.                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       | •                      |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | hadronic jets both standalone and with a preshower detector;                                                                                                                                                      |                                                                                                                                                                                                                                               | uilding of a hadronic-size prot<br>nding agencies in 2020 (INFN,   |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  | <ol> <li>Angular and position resolution, in particular for the identification and separation of the two photon showers from π<sup>0</sup> decays;</li> <li>Reconstruction of the longitudinal shower development</li> </ol> | identification and separation of the two photon showers from $\pi^0$                                                                                                                                              | -                                                                                                                                                                                                                                             |                                                                    | JSD has been granted, from March 2020 over 5 years, by                                                                                                                                  | ,                                                                                                                                                                                                                                               |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | 3 Reconstruction of the longitudinal shower development                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                    | on (NRF) for building a full-hadronic-scale projective                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | 4. Particle identification of single e, $\pi$ , $\mu$ , $\gamma$ , both isolated and                                                                                                                              |                                                                                                                                                                                                                                               |                                                                    | ng, operating and readout issues. Additional soft funding<br>upport postdoc positions and graduate students in each                                                                     |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              | <ul> <li>5. Identification and reconstruction of final states from hadronic<br/>τ-decays;</li> </ul>                                                                                                              | institute.                                                                                                                                                                                                                                    |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |
|   |                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                               |                                       |                        |









# Detector R&D Major R&D Breakdown

#### 1. Vertex

- 1.1. Pixel Vertex Prototype
- 1.2. ARCADIA/LFoundry CMOS

#### 2. Tracker

- 2.1. TPC
- 2.2. Silicon Tracker
- 2.3. Drift Chamber

#### 3. Calorimeter

#### **3.1.ECAL Calorimeter**

- 3.1.1. Crystal Calorimeter
- 3.1.2. Scintillator-Tungsten

#### **3.2. HCAL PFA Calorimeter**

- 3.2.1. DHCAL
- 3.2.2. Sci AHCAL
- 3.3. DR Calorimeter

#### 4. Muon Detectors

4.1. Muon Scintillator Detector

#### 4.2. Muon and pre-shower MuRWell Detectors

#### 5. Solenoid

- 5.1. LTS Solenoid
- 5.2. HTS Solenoid

#### 6. MDI

- 6.1. LumiCal Prototype
- 6.2. Mechanics
- 7. TDAQ
- 8. Software and Computing

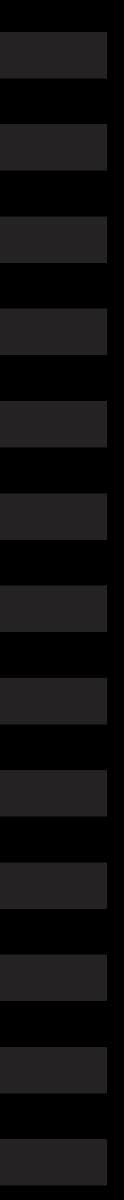
| w | 1.1 |  |
|---|-----|--|
| w | 1.2 |  |
| w | 2.1 |  |
| w | 2.2 |  |
| w | 2.3 |  |
| w | 3.1 |  |
| w | 3.1 |  |
| w | 3.2 |  |
| w | 3.2 |  |
| w | 3.3 |  |
| w | 4.1 |  |
| w | 4.2 |  |
| w | 5.1 |  |
| w | 5.2 |  |
| w | 6.1 |  |
| w | 6.2 |  |
| W | 8-3 |  |

## 17 documents

- -RD-Vertex-Prototype
- 2-RD-Vertex-ARCADIA.docx
- -RD-Tracker-TPC-v3.docx
- -RD-Tracker-SiliconTracker-Prototype\_v3.docx
- -RD-Tracker-DriftChamber-v2.docx
- .1-RD-ECAL-Crystal-Calorimeter-v2.docx
- .2-RD-ECAL-Sci-W-v1.docx
- .1-RD-HCAL-PFA-DHCAL-v2.docx
- 2.2-RD-HCAL-PFA-Sci-AHCAL.docx
- B-RD-Dual-Readout-Calorimeter-v2.docx
- \_RD\_Muon\_Scintillator-v1.docx
- -RD-muRwell-detectors-v2.docx
- -RD-LTS-solenoid-magnet.docx
- 2-RD-HTS-solenoid-magnet.docx
- -RD-MDI-LumiCal-prototype-v2.docx
- 2-RD-MDI-Mechanics\_v2.docx
- Software\_v1.3.docx






## Projects overview Total subtasks: 95

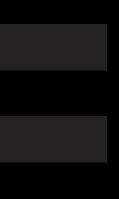
| PBS   | Task Name                            | Page | Subtasks | Context     | Team                               | Document Responsible                           |
|-------|--------------------------------------|------|----------|-------------|------------------------------------|------------------------------------------------|
|       | <b>CEPC Detector R&amp;D Project</b> |      |          |             |                                    |                                                |
| 1     | Vertex                               |      |          |             |                                    |                                                |
| 1.1   | Vertex Prototype                     | 5    | 9        | CEPC        | China+ international collaborators | Zhijun, Ouyang                                 |
| 1.2   | ARCADIA CMOS MAPS                    | 6    | 6        | Generic     | INFN, Italy                        | Manuel Rolo                                    |
| 2     | Tracker                              |      |          |             |                                    |                                                |
| 2.1   | <b>TPC Module and Prototype</b>      | 6    | 12       | CEPC        | IHEP, Tsinghua                     | Huirong                                        |
| 2.2   | Silicon Tracker Prototype            | 6    | 8        | Generic     | China, UK, Italy                   | Harald Fox, Meng Wang                          |
| 2.3   | <b>Drift Chamber Activities</b>      | 4    | 3        | FCC-ee/CEPC | INFN, Novosibirsk                  | Franco Grancagnolo                             |
| 3     | Calorimetry                          |      |          |             |                                    |                                                |
| 3.1   | ECAL Calorimeter                     |      |          |             |                                    |                                                |
| 3.1.1 | Crystal Calorimeter                  | 5    | 6        | CEPC        | IHEP, Princeton + others           | Yong Liu                                       |
| 3.1.2 | PFA Sci-ECAL Prototype               | 3    | 3        | CEPC        | USTC, IHEP                         | Jianbei Liu                                    |
| 3.2   | HCAL Calorimeter                     |      |          |             |                                    |                                                |
| 3.2.1 | PFA Digital Hadronic Calorimeter     | 4    | 5        | CEPC        | SJTU, IPNL, Weizmann, IIT, USTC    | Haijun Yang, Imad Laktineh, Shikma Bressler    |
| 3.2.2 | PFA Sci-AHCAL Prototype              | 4    | 4        | CEPC        | USTC, IHEP, SJTU                   | Jianbei Liu                                    |
| 3.3   | Dual-readout Calorimeter             | 5    | 5        | FCC-ee/CEPC | INFN, Sussex, Zagreb, South Korea  | Roberto Ferrari                                |
| 4     | Muon Detector                        |      |          |             |                                    |                                                |
| 4.1   | Scintillator-based Muon Detector     | 4    | 5        | CEPC        | Fudan, SJTU                        | Xiaolong Wang, Liang Li                        |
| 4.2   | Muon and pre-shower µRWELL-          | 5    | 4        | FCC-ee/CEPC | INFN, LNF                          | Paolo Giacomelli                               |
| 5     | Solenoid                             |      |          |             |                                    |                                                |
| 5.1   | LTS solenoid magnet                  | 4    | 4        | CEPC        | IHEP+Industry                      | Zhu Zian                                       |
| 5.2   | HTS solenoid magnet                  | 4    | 4        | CEPC        | IHEP+Industry                      | Zhu Zian                                       |
| 6     | MDI                                  |      |          |             |                                    |                                                |
| 6.1   | LumiCal Prototype                    | 4    | 2        | ILC/CEPC    | AC, IHEP                           | Suen Hou                                       |
| 6.2   | Interaction Region Mechanics         | 3    | 4        | CEPC        | IHEP                               | Hongbo Zhu                                     |
| 8     | Software and Computing               | 7    | 11       | CEPC        | IHEP, SDU                          | Li Weidong, Ruan Manqi, Sun Shengseng, Li Gang |

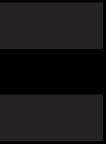
#### 17 documents, total: 80 pages

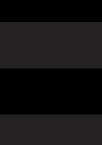








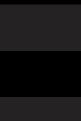


## Projects overview: Funding


| PBS   | Task Name                            | Page | Subtasks | Context     | Team                               | Funding                         |
|-------|--------------------------------------|------|----------|-------------|------------------------------------|---------------------------------|
|       | <b>CEPC Detector R&amp;D Project</b> |      |          |             |                                    |                                 |
| 1     | Vertex                               |      |          |             |                                    |                                 |
| 1.1   | Vertex Prototype                     | 5    | 9        | CEPC        | China+ international collaborators | MOST1/MOST2                     |
| 1.2   | ARCADIA CMOS MAPS                    | 6    | 6        | Generic     | INFN, Italy                        | INFN: 1.35 MEur                 |
| 2     | Tracker                              |      |          |             |                                    |                                 |
| 2.1   | <b>TPC Module and Prototype</b>      | 6    | 12       | CEPC        | IHEP, Tsinghua                     | MOST, NSF                       |
| 2.2   | Silicon Tracker Prototype            | 6    | 8        | Generic     | China, UK, Italy                   | None dedicated                  |
| 2.3   | <b>Drift Chamber Activities</b>      | 4    | 3        | FCC-ee/CEPC | INFN, Novosibirsk                  | INFN: 370 kEur                  |
| 3     | Calorimetry                          |      |          |             |                                    |                                 |
| 3.1   | ECAL Calorimeter                     |      |          |             |                                    |                                 |
| 3.1.1 | Crystal Calorimeter                  | 5    | 6        | CEPC        | IHEP, Princeton + others           | CAS: 4 MRMB                     |
| 3.1.2 | PFA Sci-ECAL Prototype               | 3    | 3        | CEPC        | USTC, IHEP                         | MOST, NSF: 3 MRMB               |
| 3.2   | HCAL Calorimeter                     |      |          |             |                                    |                                 |
| 3.2.1 | PFA Digital Hadronic Calorimeter     | 4    | 5        | CEPC        | SJTU, IPNL, Weizmann, IIT, USTC    | MOST, NSF: 5.6M, Cremlin+       |
| 3.2.2 | PFA Sci-AHCAL Prototype              | 4    | 4        | CEPC        | USTC, IHEP, SJTU                   | MOST: 10 MRMB                   |
| 3.3   | Dual-readout Calorimeter             | 5    | 5        | FCC-ee/CEPC | INFN, Sussex, Zagreb, South Korea  | INFN, RBI: 60kEur, KNRF: 2 MUSD |
| 4     | Muon Detector                        |      |          |             |                                    |                                 |
| 4.1   | Scintillator-based Muon Detector     | 4    | 5        | CEPC        | Fudan, SJTU                        | Fudan                           |
| 4.2   | Muon and pre-shower µRWELL-          | 5    | 4        | FCC-ee/CEPC | INFN, LNF                          | INFN: 150 kEur                  |
| 5     | Solenoid                             |      |          |             |                                    |                                 |
| 5.1   | LTS solenoid magnet                  | 4    | 4        | CEPC        | IHEP+Industry                      | CAS, IHEP: 4.5 MRMB             |
| 5.2   | HTS solenoid magnet                  | 4    | 4        | CEPC        | IHEP+Industry                      | CAS: 3 MRMB                     |
| 6     | MDI                                  |      |          |             |                                    |                                 |
| 6.1   | LumiCal Prototype                    | 4    | 2        | ILC/CEPC    | AC, IHEP                           | AC: Small                       |
| 6.2   | Interaction Region Mechanics         | 3    | 4        | CEPC        | IHEP                               | IHEP                            |
| 8     | Software and Computing               | 7    | 11       | CEPC        | IHEP, SDU                          | None                            |

#### 17 documents, total: 80 pages





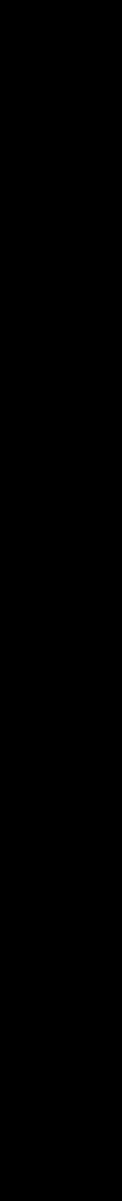
















# Projects overview: FTE

|       | ecis overvie                     |                                  | otal: | 54      | 12      | 52       | 11        |
|-------|----------------------------------|----------------------------------|-------|---------|---------|----------|-----------|
|       | Task Name                        | Team                             |       | Faculty | Postdoc | Students | Engineers |
|       | CEPC Detector R&D Project        |                                  |       |         |         |          |           |
|       | Vertex                           |                                  |       |         |         |          |           |
|       | Vertex Prototype                 | China+ international collaborate | ors   | 21      |         | 17.2     | 3.5       |
| 1.2   | ARCADIA CMOS MAPS                | INFN, Italy                      |       |         |         |          |           |
| 2     | Tracker                          |                                  |       |         |         |          |           |
| 2.1   | TPC Module and Prototype         | IHEP, Tsinghua                   |       | 3       |         | 4        | 1         |
| 2.2   | Silicon Tracker Prototype        | China, UK, Italy                 |       |         |         |          |           |
| 2.3   | Drift Chamber Activities         | INFN, Novosibirsk                |       | 2.5     | 2.4     | 1.8      | 0.8       |
| 3     | Calorimetry                      |                                  |       |         |         |          |           |
| 3.1   | ECAL Calorimeter                 |                                  |       |         |         |          |           |
| 3.1.1 | Crystal Calorimeter              | IHEP, Princeton + others         |       | 1.3     |         | 1        |           |
| 3.1.2 | PFA Sci-ECAL Prototype           | USTC, IHEP                       |       | 1.9     |         | 2.5      |           |
| 3.2   | HCAL Calorimeter                 |                                  |       |         |         |          |           |
| 3.2.1 | PFA Digital Hadronic Calorimeter | SJTU, IPNL, Weizmann, IIT, USTO  | C     | 2       | 1.5     | 2.5      | 0.5       |
| 3.2.2 | PFA Sci-AHCAL Prototype          | USTC, IHEP, SJTU                 |       | 2.3     | 0.8     | 4        |           |
| 3.3   | Dual-readout Calorimeter         | INFN, Sussex, Zagreb, South Kor  | rea   | 4.2     | 2.2     | 6.8      | 1.3       |
| 4     | Muon Detector                    |                                  |       |         |         |          |           |
| 4.1   | Scintillator-based Muon Detector | Fudan, SJTU                      |       | 1       |         | 2.1      | 0.2       |
| 4.2   | Muon and pre-shower µRWELL-      | INFN, LNF                        |       | 2       | 1.5     | 1        | 0.3       |
| 5     | Solenoid                         |                                  |       |         |         |          |           |
| 5.1   | LTS solenoid magnet              | IHEP+Industry                    |       | 2.5     | 0.5     | 2        | 0.5       |
| 5.2   | HTS solenoid magnet              | IHEP+Industry                    |       | 2       | 0.5     | 2        | 0.5       |
| 6     | MDI                              |                                  |       |         |         |          |           |
| 6.1   | LumiCal Prototype                | AC, IHEP                         |       | 1       | 1       | 2        | 1         |
| 6.2   | Interaction Region Mechanics     | IHEP                             |       | 0.5     |         |          | 1.5       |
|       | Software and Computing           | IHEP, SDU                        |       | 7       | 2       | 3        | 0         |



# Projects overview: Schedule

| PBS   | Task Name                                  | Finish      | 2020 |    | 2021    | 2022     |       | 202    |         | 202    |         | 2025    |       | 2026    |       | 202        |        | 2028         |           | 2029        |
|-------|--------------------------------------------|-------------|------|----|---------|----------|-------|--------|---------|--------|---------|---------|-------|---------|-------|------------|--------|--------------|-----------|-------------|
|       | CEPC Detector R&D Project                  | 26/12/31    |      | H2 | H1 H2   | 2 H1     | H2    | H1     | H2      | H1     | . H2    | H1      | H2    | H1      | H2    | H1<br>1 CE |        | H1<br>tector | H2<br>R&D | H1<br>Proje |
| 1     | Vertex                                     | 23/12/29    |      |    |         |          |       |        |         | ⊣ Ve   | ertex   |         |       |         |       |            |        |              |           | -           |
| -     | Vertex Prototype                           | 23/12/29    |      |    |         |          |       |        |         | Ve     | rtex P  | rototy  | pe    |         |       |            |        |              |           |             |
| 1.2   | ARCADIA CMOS MAPS                          | 23/12/29    | _    |    |         |          |       |        |         | AR     |         | а смо   | S MA  | APS     |       |            |        |              |           |             |
| 2     | Tracker                                    | 24/12/31    | — I_ |    |         |          |       |        |         |        |         | - Tra   | cker  |         |       |            |        |              |           |             |
| 2.1   | TPC Module and Prototype                   | 23/12/29    | _    |    |         |          |       |        |         | ТР     | C Mod   | lule ar | nd Pr | ototyp  | е     |            |        |              |           |             |
| 2.2   | Silicon Tracker Prototype                  | 23/10/31    |      |    |         |          |       |        |         | Silic  | on Tra  | cker P  | roto  | type    |       |            |        |              |           |             |
| 2.3   | Drift Chamber Activities                   | 24/12/31    |      |    |         |          |       |        |         |        |         | Drif    | t Cha | mber    | Activ | ities      |        |              |           |             |
| 3     | Calorimetry                                | 24/12/31    |      |    |         |          |       |        |         |        |         | - Cal   | orim  | etry    |       |            |        |              |           |             |
| 3.1   | ECAL Calorimeter                           | 24/12/31    |      |    |         |          |       |        |         |        |         | - ECA   | AL Ca | lorime  | ter   |            |        |              |           |             |
| 3.1.1 | Crystal Calorimeter                        | 21/12/31    |      |    |         | Crys     | tal C | aloriı | meter   | •      |         |         |       |         |       |            |        |              |           |             |
| 3.1.2 | PFA Sci-ECAL Prototype                     | 24/12/31    |      |    |         |          |       |        |         |        |         | PFA     | Sci-I | ECAL P  | rotot | ype        |        |              |           |             |
| 3.2   | HCAL Calorimeter                           | 22/12/30    |      |    |         |          |       | - НС   | CAL Ca  | lorin  | neter   |         |       |         |       |            |        |              |           |             |
| 3.2.1 | PFA Digital Hadronic Calorimeter           | 21/12/31    |      |    |         | PFA      | Digit | tal Ha | adroni  | ic Cal | orime   | ter     |       |         |       |            |        |              |           |             |
| 3.2.2 | PFA Sci-AHCAL Prototype                    | 22/12/30    |      |    |         |          |       | PF/    | A Sci-/ | AHCA   | L Prot  | otype   |       |         |       |            |        |              |           |             |
| 3.3   | Dual-readout Calorimeter                   | 24/12/31    |      |    |         |          |       |        |         |        |         | Dua     | I-rea | dout C  | alori | mete       | er     |              |           |             |
| 4     | Muon Detector                              | 24/12/31    |      |    |         |          |       |        |         |        |         | - Mu    | on D  | etecto  | r     |            |        |              |           |             |
| 4.1   | Scintillator-based Muon Detector Prototype | 23/12/29    |      |    |         |          |       |        |         | Sci    | ntillat | or-bas  | sed N | /luon D | etec  | tor P      | rototy | /pe          |           |             |
| 4.2   | Muon and pre-shower µRWELL-based detector  | ors24/12/31 |      |    |         |          |       |        |         |        |         | Mu      | on ar | nd pre- | show  | ver µ      | RWEL   | L-base       | d de      | tector      |
| 5     | Solenoid                                   | 26/12/31    |      |    |         |          |       |        |         |        |         |         |       |         |       | 1 So       | lenoid | I            |           |             |
| 5.1   | LTS solenoid magnet                        | 25/12/31    |      |    |         |          |       |        |         |        |         |         |       | LTS :   | solen | oid r      | nagne  | et           |           |             |
| 5.2   | HTS solenoid magnet                        | 26/12/31    |      |    |         |          |       |        |         |        |         |         |       |         |       | HT         | S sole | noid m       | nagne     | t           |
| 6     | MDI                                        | 22/12/30    | 0    |    |         |          |       | - MI   | DI      |        |         |         |       |         |       |            |        |              |           |             |
| 6.1   | LumiCal Prototype                          | 20/12/31    |      |    | LumiCal | Protot   | ype   |        |         |        |         |         |       |         |       |            |        |              |           |             |
| 6.2   | Interaction Region Mechanics               | 22/12/30    |      |    |         |          |       | Int    | eracti  | ion R  | egion   | Mecha   | anics |         |       |            |        |              |           |             |
| 8     | Software and Computing                     | 20/12/31    | ľ    |    | Softwa  | re and ( | Comp  | putin  | g       |        |         |         |       |         |       |            |        |              |           |             |





# Plan and Final Remarks:

#### 1. Vertex

- 1.1. Pixel Vertex Prototype
- 1.2. ARCADIA/LFoundry CMOS

#### 2. Tracker

- 2.1. TPC
- 2.2. Silicon Tracker
- 2.3. Drift Chamber

#### 3. Calorimeter

- 3.1.ECAL Calorimeter
- 3.1.1. Crystal Calorimeter
- 3.1.2. Scintillator-Tungsten

#### **3.2. HCAL PFA Calorimeter**

- 3.2.1. DHCAL
- 3.2.2. Sci AHCAL
- 3.3. DR Calorimeter

#### 4. Muon Detectors

- 4.1. Muon Scintillator Detector
- 4.2. Muon and pre-shower MuRWell Detectors

#### 5. Solenoid

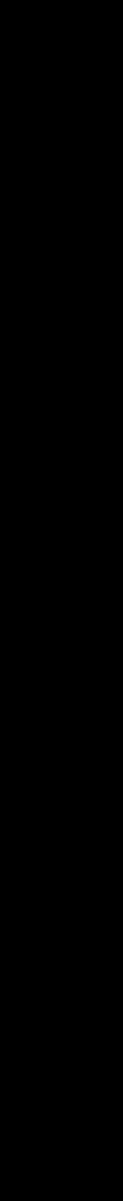
- 5.1. LTS Solenoid
- 5.2. HTS Solenoid

#### 6. MDI

- 6.1. LumiCal Prototype
- 6.2. Mechanics
- 7. TDAQ
- 8. Software and Computing

- - In general documents are in good shape, requiring only minor modifications to be released
  - Describing up to 95 different tasks
  - Some funding available, but to realize the tasks described more funding will be required
  - Labour resources involved > 120 FTE!
- 2) Compile into one single document and provide to detector R&D committee soon Summary document will be circulated among everyone for final comments • Documents are available at: <u>https://</u> indico.ihep.ac.cn/event/11799/

1) Collected preliminary version of documents describing **R&D** projects related to CEPC


3) Discuss with committee next steps, including proposal submission procedure







# Extra Slides



## **CEPC International Detector R&D Committee (IDRC) Committee: 16 members**

## In Beijing

Dave Newbold, UK, RAL (chair) Jim Brau, USA, Oregon Brian Foster, UK, Oxford Liang Han, China, USTC Andreas Schopper, CERN, CERN Steinar Stapnes, CERN, CERN Hitoshi Yamamoto, Japan, Tohoku

**Excused from first meeting** Harvey Newman, USA, Caltech Marcel Stanitzki, Germany, DESY

## By Vidyo

Valter Bonvicini, Italy, Trieste Ariella Cattai, CERN, CERN Cristinel Diaconu, France, Marseille Abe Seiden, USA, UCSC Laurent Serin, France, LAL Roberto Tenchini, Italy, INFN Ivan Villa Alvarez, Spain, Santader





## **CEPC International Detector R&D Committee (IDRC)**

## Committee proposed by CEPC IAC

Detector R&D Committee that reviews and endorses the Detector R&D proposals from the international community, such that the international participants could apply for funds from their funding agencies and make effective and sustained contributions.



## CEPC International Detector R&D Committee (IDRC) First meeting happened on Tuesday, Nov 19 https://indico.ihep.ac.cn/event/10941/

Key tasks of this inaugural meeting were:

• To establish the working mode of the panel

• To review the current catalogue of R&D activities

of the R&D programme, and on short-term priorities

• To identify further information the committee will need in the future.

- Organizational Meeting:
- To provide initial feedback to the project leadership on the shape and scale



## **DRC** Recommendations:

- 3. As a step in the transition from R&D to detector choices and TDRs, the project should parallel with sub-system R&D, and form the focal point for global detector optimisation studies
- and performance

aim to complete an update to the CDR within 12-18 months. This should take into account machine parameter changes, any new or modified physics requirements, and the availability of new sub-detector systems. This process should happen in

4. A conservative full-detector concept, potentially deliverable on an aggressive time scale, should be specified by the CEPC Management and adopted as the baseline for the CDR update. This should then act as a comparator for alternative concepts, that can fit within a less aggressive schedule, with a different balance of risk, cost



## **IDRC** Recommendations:

- that they do not hold up the overall detector design process. These include:
  - The precision timing detector
  - The trigger and readout strategy
  - The machine-detector interface and LumiCal
- members

5. A set of short-term requirements on simulation and reconstruction tools should be established, serving the needs of detector optimization studies, and informing the plans for software and data management development in the pre-TDR period

6. Find ways to increase the rate of progress should be found for certain R&D areas, such

7. Sufficient time should be allocated during CEPC workshops for IDRC discussions, not conflicting with other events requiring the attendance of project leadership or IDRC



# Findings

- detector should be determined as a matter of urgency.
- effect on overall physics performance.
- features to allow a wider range of physics. The justification for a stand-alone muon spectrometer should be carefully examined.

 Requirements on sub-detectors should not be viewed in isolation, but increasingly in the context of studies of global detector performance, since there are strong interactions between sub-detector design choices. One example is the interplay between calorimetry, precision timing, and tracking in achieving the overall particle ID performance goals.

In light of the above, the requirements on, and potential of, the proposed precision timing

 A clear chain of argument, starting with physics requirements and culminating in detailed sub-detector specifications, should be maintained during the optimisation of the detector concepts. This will allow the impact of design changes to be assessed in terms of their

 The requirements on the muon sub-detector should be clarified, specifying the minimum performance needed for the core physics programme, as well as desirable additional



# Findings

- ulletstrategy should be defined, capable of dealing with 25ns running at the Z pole.
- or more clear options for triggering need to be rapidly established. The feasibility of operation in 'triggerless mode' should also be evaluated.
- be established.
- tool, capable of supporting parallel studies of several evolving integrated detector design.

Regardless of choices regarding a precision timing detector, a common timestamping

 There is no clear overarching trigger and readout strategy for the CEPC detectors. Decisions on architecture may have strong effects on the design of sub-detector electronics, and one

• There are a number of overlapping proposals for calorimetry, with a wide range of cost and performance. A clear set of requirements and a path to a baseline design choice need to

 Global detector studies will require, at a minimum, a coherent and flexible fast simulation concepts. This should continue to be a priority in experiment software development, though it is also important to begin the process of designing the experiment data model and base software framework. It is likely that software tools are on the critical path for detector

# Findings

- machines. The strategy to continue co-development of common tools with other limited available effort.
- be reinforced and maintained.
- optimisation and technology selection criteria to be defined well in advance of the collaboration-building stage.
- dictated by the overall CEPC schedule.

 The CEPC software suite builds upon common tools used for studies of several different experiments is correct, and divergence between projects should be avoided in view of the

 The machine-detector interface and LumiCAL are complex and challenging aspects of the overall detector design. Close cooperation between accelerator and detector teams must

 In general, the process of transition from generic R&D to concrete optimised CEPC detector designs is not yet fully mapped out. Adherence to an aggressive overall project plan will require this process to be understood in the coming year, and for a clear strategy for

• A wide-ranging R&D programme should be maintained for the time being, though with the recognition that not all concepts under development will be mature on the time scale

## Highlights for discussion at IDRC Meeting

| Machine Detector Interface 5'<br>Speaker: Dr. Hongbo ZHU (IHEP)<br>Material: Slides 🔂                                                                                                                        | Hadronic Calorimetry 5'<br>Speakers: Haijun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Sci<br>Technology of China)<br>Material: Slides 🔂 🛪 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Speaker: Suen Hou (高能所)<br>Material: Slides  彭                                                                                                                                                               | Dual Readout Calorimeter 5'<br>Speakers: Dr. gabriella gaudio (INFN-PV), Franco Bedeschi (INFN-Pisa), Prof. Sehwook L<br>(Kyungpook National University)             |
| Silicon vertex detector 5'<br>Speakers: Prof. Qun OUYANG (IHEP), Prof. Zhijun Liang (IHEP)<br>Material: Slides 1 1                                                                                           | Material: Slides 🔁                                                                                                                                                   |
| Silicon tracker 5'<br>Speakers: Prof. Meng Wang (Shandong University), Dr. Hongbo ZHU (IHEP)<br>Material: Slides                                                                                             | Speaker: Dr. Feipeng NING (IHEP)<br>Material: Slides 1                                                                                                               |
| Time Projection Chamber 5'<br>Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)<br>Material: Slides                                                                                            | Muon detector 5'<br>Speaker: Paolo Giacomelli (INFN-Bo)<br>Material: Slides 🔂                                                                                        |
| Drift Chamber 5'<br>Speakers: Franco Grancagnolo, Franco Bedeschi (INFN-Pisa)<br>Material: Slides 🔂                                                                                                          | Software 5'<br>Speaker: Dr. Weidong Li (高能所)<br>Material: Slides 题                                                                                                   |
| Electromagnetic Calorimetry       5'         Speakers:       Dr. Yong Liu (Institute of High Energy Physics), Dr. Jianbei Liu (University of Science and Technology of China)         Material:       Slides | Trigger and DAQ 5'<br>Speakers: Mr. Jingzhou ZHAO Jingzhou (高能所), Prof. Zhen An LIU Zhenan (IHEP)<br>Material: Slides 题                                              |

#### https://indico.ihep.ac.cn/event/10941/



