Status of CEPC DHCAL

Weihao Wu (SJTU) for CEPC Calo Working Group

CEPC Day May 8, 2020

Requirements of CEPC Calorimeters

	Physics process	Measurands	Detector subsystem	Performance requirement	
	$\label{eq:constraint} \begin{array}{c} ZH, Z \rightarrow e^+ e^-, \mu^+ \mu^- \\ H \rightarrow \mu^+ \mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	
	$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o bar b/car c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$	
	$H \rightarrow q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{{ m jet}}_E/E= 3\sim 4\%$ at 100 GeV	
	$H ightarrow \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E(ext{GeV})}} \oplus 0.01$	
JER = 0 100 50 50 80 80	CEPC CDR	<u>JER = 0.3/√E</u> 100 ∑og 80	CEPC CDR	JER = 0.6/√E	CEPC CDR
60 60 80 Mj1	100 120 [GeV]	60 60 80 M _{j1} [GeV]	100		100 120 I _{j1} [GeV] 2

PFA Calorimeters

SiW ECAL ScW ECAL AHCAL: Scintillator + SiPM SDHCAL: RPC & MPGD

SDHCAL based on RPC

SDHCAL TB: Particle identification

BDT: Boosted Decision Tree

arXiv:2004.02972

→ BDT helps to improve the hadron/e/mu PID, purify TB samples.
 → Keep 99% of pion efficiency and to reject >99% of e/mu.

Cleanroom for GRPC Manufacture

Cleanroom has been built for GRPC manufacture at SJTU in January, 2020.

- Class 10000
- Room Size: $6m \times 7m$

GRPC construction in Cleanroom

- Several GRPC prototypes have been made and tested.
 - Size: 35cm \times 50 cm
 - Successful cosmic ray test
- Next Step:
 - Design a full size of $1m \times 1m$.

Timing Measurement in SDHCAL

- Five dimension (5D) SDHCAL:
 - Energy, position, timing
- Add several MRPC layers in SDHCal prototype
 - Fast timing detectors
 - Same size as standard RPC
- New electronics
 - Front-end electronics with timing and hit information measurement
 - New DIF hardware and a DAQ system

Timing Measurement in SDHCAL

Cooling system is very important

- With cooling at 6th layer:
- With cooling each layer:
 - uniform among layers
 - cooling power: ~1.53W/layer

cooling pipes

cooling at each layer

PCB with resistors to mimic HARDROC ASIC heat source for cooling design and test.

Use resistors substituting for ASICs

- Resistors: 4*6*10 per PCB
- Total resistance of a group of 10 parallel-connected resistors: 470Ω
- ASICs in SDHCAL: ~1mW/ch → ~5.5V on resistors

Sensor: Si70xx, high precision temperature & humidity sensor

- range: -40~125°C
- accuracy: 0.1°C at most

8*8 sensors monitored simultaneously with multiplexers based on I²C

- Cooling plates: water pipes imbedded in metal plates
 - cooling ability: ~kW/m²
 - safety(water is not so good)
- Stainless steel
 - poor heat transmission
 - difficult to produce → high cost
 - can work as the absorber
- Aluminum
 - good heat transmission
 - easy to produce
 - 5 times the radiation length than steel

Cooling plates

Cooling Test Module

PFA Calorimeters

SiW ECAL ScW ECAL AHCAL: Scintillator + SiPM SDHCAL: RPC & MPGD

RWELL Detector development

RWELL: Resistive WELL

- a) Hole Diameter: 500µm
- b) Pitch: 1mm
- c) Thickness: 400µm
- d) Sensitive area: 25cm× 25cm

DLC deposition and Thermal bonding

- Key issues for RWELL:
- 1. Resistive layer-DLC(Diamond like carbon)
- 2. Bonding method

DLC is deposited on a PCB substrate by the magnetron sputtering method

A DLC-coating Readout Board Surface resistivity :>100MΩ/SQ

DLC deposition procedure

Step 1, Place the gluing film

Step 2, Pre-heating

RWELL Detector

Step 3, Thermal boding

Thermal bonding procedure

Gain Test

• Test setup:

- Gain uniformity is not good. Possible reason:
 - 1. Gas flow
 - 2. Uniformity due to the thermal bonding procedure

Rate Capability

• RWELL is irradiated with 8 keV X-ray, and gain of the detector is almost no reduction@300kHz/cm² (Initial gain G0: \sim 5500).

• Detector discharge while irradiated at a higher rate

Summary and Future Plans

- SDHCAL prototype constructed and made several TB at CERN.
- The TB data analysis using BDT method has been submitted to JINST.
- Cleanroom has been built for RPC construction at SJTU.
- The design of electronics and PCB for MRPC readout is ongoing
 - Timing measurement
- The simulation and test module for active cooling is progressing.
- The R&D of RWELL detector goes well and several tests have been carried out successfully.
- Close collaboration with several international research institutes (eg. IPNL, Weizmann, Israel Inst. of Tech.)

Thanks for your attention !

Backup

SDHCAL: Particle identification

Schematic of CEPC Detector

CEPC HCAL Geometry

SDHCAL based on RPC

JINST 10 (2015) P10039

Electronics Readout

Printed Circuit Boards (PCB) were designed to reduce the cross-talk with 8-layer structure and buried vias.

Tiny connectors were used to connect the PCB two by two so the 24X2 ASICs are daisy-chained. $1 \times 1m^2$ has 6 PCBs and 9216 pads.

DAQ board (DIF) was developed to transmit fast commands and data to/from ASICs.

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	$1 \text{mW/ch}, 10 \mu \text{W/ch}$
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	$1.42 \text{mW/ch}, 10 \mu \text{W/ch}$
MICROROC	64	1fC~500fC	Multiple	335µW/ch, 10µW/ch

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

- □ Thickness: 1.4mm
- □ 64 Channels
- □ 3 threshold per channel
- □ 128 hit storage depth
- Minimum distinguishable charge:2fC
 ²⁴

SDHCAL: RPC Construction at SJTU

1.Position the walls and pipes

2.Glue walls and pipes.

3.Draw the spacer position sketch

4.Put the spacers on the glass

5.Glue the spacers

6. Glue the second glass to the walls

7. Gas tight with silicon and test leaks

8. Graphite coating and mylar fixing

SDHCAL: RPC Construction

- CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. Power pulsing will not work at CEPC.
- Compare to ILD, the power consumption of VFE readout electronics at CEPC is about two orders of magnitude higher, hence it requires an active cooling
 - Evaporative CO₂ cooling in thin pipes embedded in Copper exchange plate.
 - For CMS-HGCAL design: heat extraction of 33 mW/cm², allows operation with 6×6 mm² pixels with a safety margin of 2
- > To be modelled for Mokka simulation

Transverse view of the slab with one absorber and two active layers.

➔ The silicon sensors are glued to PCB with VFE chips, cooled by the copper plates with CO₂ cooling pipes.

Active Cooling Simulation and Test

- Resistors: 4*6*10 per PCB
- Total resistance of a group of 10 parallel-connected resistors: 470Ω
- ASICs in SDHCAL: ~0.064W/chip
 - → ~5.5V on resistors
- Requirements for the power supply:
 - Voltage range: >0~5.5V
 - Output power: >1.536W/PCB
 - Adjustable/programmble

Resistance(Ω)	4.7k
Power rating(W)	0.0625(~17V)
Max operating voltage(V)	50
Max overload voltage(V)	100
Max operating T(°C)	155
Min operating T(°C)	-55
Temperature coefficient	\pm 100ppm/°C

Active Cooling Simulation

Cooling maybe necessary if operating at continuous mode (CEPC)

- A water-based cooling system inside copper tubes in contact with the ASICs to absorb excess heat.
- Temperature distribution in an active layer of the SDHCAL.

Water cooling : h = 10000 W/m²/k Thermal load : 80 mW/chip

 For AHCAL, a water-based copper cooling system embedded in the stainless steel absorber.

Active Cooling Simulation

Temperature test of RPC+PCB

Active Cooling Simulation

- 10 layers, flow rate: 1m/s
- With cooling at 6th layer:
- With cooling each layer:
 - uniform among layers
 - cooling power: ~1.53W/layer

PCB with resistors to mimic HARDROC ASIC heat source for cooling design and test.

4

6

Layer

Highest

- Lowest 7

10

8

Active Cooling Module

Cooling plates: water pipes imbedded in metal plates

Cooling Test Module

- cooling ability: ~kW/m²
- safety(water is not so good)
- Stainless steel
 - poor heat transmission
 - difficult to produce \rightarrow high cost
 - can work as the absorber
- Aluminum
 - good heat transmission
 - o easy to produce
 - **o** 5 times the radiation length than steel

Cooling plates

