Simulation of dynamic DFFs and Latches

Tianya Wu CEPC MOST2 Chips Meeting twu@ifae.es 27-04-2019

4 types dynamic DFFs in Pixel

Type1: In pixel Latch for masking and calibration

Type2: EoC Latch for address stabilization

Type3: ALPIDE like scheme in pixel DFF

Type4: FE-I3 like scheme in pixel DFF and Shifting register Chain.

Setup & Hold time of Standard cell

Standard Cell Libraries

D Flip-Flops with Q Output Only

DFNRQ1, DFNRQ2 AND DFNRQ4

The DFNRQ1 (1x drive), DFNRQ2 (2x drive) and DFNRQ4 (4x drive) cells are positive edge triggered D flip-flops. Data present at the D input is transferred to the Q output on the positive edge of the clock, CP.

Function Table

CONSTRAINTS

Constraint Pin		Related Pin	setup(ns)	hold(ns)	
D(HL)		CP(LH)	0.1312	-0.0700	
D(LH)		CP(LH)	0.1049	-0.0874	

CONSTRAINTS 1 COV CC 12EC							
Constraint Pin	Related Pin C	setup(ns)	hold(ns)				
 D(HL)	CP(LH)	0.2186	-0.1224				
D(LH)	CP(LH)	0.1749	-0.1399				

Constraint Pin	Related Pin	setup(ns)	hold(ns)		
D(HL)	CP(LH)	0.0874	-0.0350		
D(LH)	CP(LH)	0.0874	-0.0699		

From the technical documents of TowerJazz, we can find the hold time and setup time parameters of a standard DFF in different corners.

Schematic simulation result

- The minimum value of T-hold will be arriving before the rising edge of CLOCK.
- Latch1 shows the curve of half transmission gate and Latch2 is for full gate.
- The delay difference between two latches is 0.73ns here.

Schematic simulation result

 When the data is changed from LOW to HIGH, the delay difference between two latches is almost 0.

 The approach I used to measure the setup &hold time as you can see the figure below. I tuned the small window of the DATA to be the input and check the output of the Latch.

Schematic level simulation

	Setup time (ns)			Hold time(ns)		
Types	TT 1.8V 27℃	FF 1.6V 50℃	SS 1.6V 50℃	TT 1.8V 27℃	FF 1.6V 50℃	SS 1.6V 50℃
Type1(half)	1.07	0.97	3.17	0.08	-0.01	-0.013
Type2(full)	0.12	0.10	0.67	-0.01	-0.01	-0.02
Type3(with RST)	1.17	0.37	1.17	-0.02	-0.01	-0.12
Type4 (DFF)	1.7	1.17	3.67	-0.02	-0.02	-0.18

- The delay of half transmission gate setup time is obviously bigger than full one.
- There is no much difference of the minimum hold time of different Latches
- The Type3 DFF is active by the falling edge of CLK, is better than rising edge DFF.
- The worst setup time of DFF is 3.67ns.

Thanks for your attention.

