Theoretical Progresses on Double-Charm Baryons

Hadron Physics Online Forum, 2020.05.29

Fu-Sheng Yu Lanzhou University

Outline

1. Introduction: why double-charm baryon?

2. Role of decay in the observation

3. Recent theoretical progresses

1. Why double-charm baryons?

 Double-charm baryons are predicted in SU(4) quark model

> De Rujula, Georgi and Glashow, 1975; Jaffe, J. E. Kiskis, 1976; Ponce, 1979

Not established in exp until 2017 by LHCb

 $m(\Xi_{cc}^{++}) = (3621.40 \pm 0.78) \text{ MeV}$

To complete the hadron spectrum

See review by Chen, Chen, Liu, Liu, Zhu, 2017

See Ji-bo's talk

1. Why double-charm baryons?

- A heavy 'double-star' system with an attached light 'planet', much different from light baryons
- Open a new window for QCD properties

1. Why double-charm baryons?

- A heavy 'double-star' system with an attached light 'planet', much different from light baryons
- Open a new window for QCD properties
- Lattice predictions are consistent with LHCb measurement

PDG review on Quark Model

4000

Lattice predictions

- Two problems in the exp searches: Production and Decay $N \propto \sigma \cdot BR$
- Production problem was solved at the beginning of LHC running

$$\sigma(pp \to \Xi_{cc}) \sim \sigma(pp \to B_c)$$

- B_c meson has been well studied at LHCb - Large amount of Ξ_{cc} are expected in early days of LHCb
- So the last problem is the Decay of doubly charmed baryons

C.H.Chang, C.F.Qiao, J.X.Wang, X.G.Wu, 2005, 2006 X.G.Wu, Sci.China.PMA, 2020

- Decay properties are the key problem in the LHCb searches of doubly charmed baryons.
- The 1/2+ ground states can only decay weakly, $\Delta C = 1$
- More than 100 processes of charmed hadrons decays, due to the high energy scale of charm. See D and Λ_c decays.
- Exp measurements have to choose one or some of them.
- Statistics requires: largest branching ratios and easily detected

FSY, Sci.China.PMA, 2020

 Ξ_{cc}^{++}

 Ξ_c^+

С

- Evidence
 - $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ SELEX, 2002
- But not confirmed
 - $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ FOCUS, 2002
 - $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$
 - $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ LHCb, 2013
 - Largest production

Babar, Belle, 2006, 2013

7

• Evidence

Misleading process

Babar, Belle, 2006, 2013

7

• Evidence

Misleading process

2016, LHCb Run II, What discovery channel?

Ji-bo He

Babar, Belle, 2006,2013

• Evidence

Misleading process

Two difficulties in theoretical studies on double-charm baryon decays:

dynamics is challenging

- 1. charm -> non-perturbation
- 2. baryon -> three body

Two essential aspects of weak decays:

lifetimes branching ratios

Lifetime is important

- 1. Longer lifetime \Rightarrow Larger branching ratios $BR_i = \Gamma_i \cdot \tau$
- 2. Longer lifetime \Rightarrow Higher efficiency to reject backgrounds in hadron colliders

Lifetime is important

- 1. Longer lifetime \Rightarrow Larger branching ratios $BR_i = \Gamma_i \cdot \tau$
- 2. Longer lifetime \Rightarrow Higher efficiency to reject backgrounds in hadron colliders
 - Large ambiguity in predictions

Literatures	$\mathcal{Z}_{cc}^{++}(\mathrm{fs})$	Ξ_{cc}^{+} (fs)
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250

Lifetime is important

- 1. Longer lifetime \Rightarrow Larger branching ratios $BR_i = \Gamma_i \cdot \tau$
- 2. Longer lifetime \Rightarrow Higher efficiency to reject backgrounds in hadron colliders
 - Large ambiguity in predictions
 - But less ambiguity in the ratio

$$\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$$

• Recommend Ξ_{cc}^{++} rather than Ξ_{cc}^{+}

Literatures	$\Xi_{cc}^{++}(\mathrm{fs})$	Ξ_{cc}^{+} (fs)
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250

 $\tau(\Xi_{cc}^{++}) \sim 3 \tau(\Xi_{cc}^{+})$

Branching Fractions

- Topological diagrammatic approach is suitable for hadronic charm decays
- Include non-perturbative contributions
- It works well in D decays
- It needs experimental data

Branching Fractions

Hierarchy of topological diagrams in heavy quark expansion

SCET: $|C/T| \sim |C'/T| \sim |E/T| \sim O(\Lambda_{QCD}/m_Q)$

charm decay: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{OCD}/m_c) \sim 1$

• BESIII measurements on Λ_c^+ decays are important

- Leibovich, Ligeti, Stewart, Wise, 2004

		Modes	Representation	$\mathcal{B}_{ ext{exp}}$
Σ_c^{++}		\overline{pK}^0	$\lambda_{sd}(C+E)$	$(3.04 \pm 0$
	$\Lambda_c^+ \rightarrow$	$\Lambda^0\pi^+$	$\lambda_{sd}(T - C' + B - E)/\sqrt{2}$	(1.24 ± 0)
O(0)	l	$\Delta^{++}K^{-}$	$\lambda_{sd}E$	(1.18 ± 0)
U(%)				

So far dynamics is almost ready

Branching Fractions

- Theoretical framework:
 - Short-distance contributions: factorization
 - Long-distance contributions: rescattering effects of final-state interaction

 Theoretical uncertainty is under control in the ratio of branching fractions of different processes

3. Theoretical Progresses (I) : processes

- Decaying processes for Ξ_{cc}^+ and Ω_{cc}^+

H.Y.Cheng, F.R.Xu, 2019

Suggestion for measurements

$$\begin{split} \Xi_{cc}^+ &\to \Lambda_c^+ K^- \pi^+, \ \Xi_c^+ \pi^+ \pi^- \\ \Omega_{cc}^+ &\to \Xi_c^+ K^- \pi^+ \end{split}$$

Run-Hui Li, 2017, 2018

and Ω_{cc}^+ $\mathsf{B}_{cc} \to \mathsf{B}_c P, \, \mathsf{B}_c V, \mathsf{B}_8 D^{(*)}$

 $\mathcal{BR}(\Xi_{cc}^+ \to \Xi_c^+ \rho^0) \in [0.4\%, 2.5\%]$ $\mathcal{BR}(\Omega_{cc}^+ \to \Xi_c^+ \overline{K}^{*0}) \in [0.5\%, 3.3\%].$

3. Theoretical Progresses (II) : topological diagrams

Theoretical expectation:

$$\frac{|C|}{|T|} \sim \frac{|E_1|}{|C|}$$

$$\frac{|\mathcal{A}(\Xi_{cc}^{++} \to \Sigma_c^{++} \bar{K^0})|}{|\mathcal{A}(\Xi_{cc}^{++} \to \Xi_c^{\prime+} \pi^+)|} \approx \frac{C_{LD}}{T_{SD}} \approx 0.45 \sim 1.03$$

$$\frac{|\mathcal{A}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})_{LD}|}{|\mathcal{A}(\Xi_{cc}^{++} \to \Sigma_{c}^{++} \bar{K}^{0})|} = \frac{|C'|}{|C|} = 1.22 \sim 1.27,$$

J.J.Han, H.Y.Jiang, FSY, in preparation

 $\frac{|E_2|}{|C|} \sim \frac{|E_2|}{|C|} \sim O(\Lambda_{QCD}/m_c) \sim O(1)$

$$\frac{|\mathcal{A}(\Xi_{cc}^{+} \to \Sigma_{c}^{++} K^{-})|}{|\mathcal{A}(\Xi_{cc}^{++} \to \Sigma_{c}^{++} \bar{K^{0}})|} = \frac{|E_{1}|}{|C|} = 0.38 \sim 0.39,$$

 $\frac{|\mathcal{A}(\Omega_{cc}^+ \to \Sigma_c^0 \pi^+)|}{|\mathcal{A}(\Xi_{cc}^{++} \to \Sigma_c^{++} K^0)|} = \frac{|E_2|}{|C|} = 0.39 \sim 0.40$

3. Theoretical Progresses (III) : topological-FSI

Topological quark diagram

Basic

One quark diagram -> one hadronic diagram

FSI rescattering

Tool

Ablikim, D.S.Du, M.Z.Yang, 2002 H.Y.Cheng, C.K.Chua, Soni, 2005

3. Theoretical Progresses (III) : topological-FSI

Topological quark diagram

Basic

One quark diagram -> one hadronic diagram

To test the isospin triangle relation

 $A(D^0 \to \pi^+\pi^-) - \sqrt{2}A(D^0 \to \pi^-)$

FSI rescattering

Tool

Ablikim, D.S.Du, M.Z.Yang, 2002 H.Y.Cheng, C.K.Chua, Soni, 2005

$$(\pi^0 \pi^0) = -\sqrt{2}A(D^+ \to \pi^+ \pi^0)$$
 ??

$$\begin{split} A(D^{0} \to \pi^{+}\pi^{-}) &- \sqrt{2}A(D^{0} \to \pi^{0}\pi^{0}) = -\sqrt{2}A(D^{+} \to \pi^{+}\pi^{-}) \\ 2\Delta_{1}' + \Delta_{2}' \Big|_{D^{0} \to \pi^{+}\pi^{-}} &- \sqrt{2}\left(\frac{1}{2}\Delta_{2}'\right) \Big|_{D^{0} \to \pi^{0}\pi^{0}} \neq -\sqrt{2}\left(-\Delta_{2}'\right) \Big|_{D^{+}-\pi^{-}} \\ \end{bmatrix} \end{split}$$

3. Theoretical Progresses (III) : topological-FSI

Topological quark diagram Basic

Both approaches are independent

The SU(3)-symmetry relation should be satisfied

$$\begin{split} \underbrace{2\Delta_1' + \Delta_2'}_{D^0 \to \pi^+ \pi^-} &- \sqrt{2} \left(\frac{1}{2} \Delta_2' \right) \Big|_{D^0 \to \pi^0 \pi^0} \neq -\sqrt{2} \left(-\Delta_2' \right) \Big|_{D^+ \to \pi^+ \pi^0} \\ & \swarrow \\ (\Delta_1' + \Delta_2') \Big|_{D^0 \to \pi^+ \pi^-} &- \sqrt{2} \left(\sqrt{2} \Delta_1' + \frac{1}{\sqrt{2}} \Delta_2' \right) \Big|_{D^0 \to \pi^0 \pi^0} = -\sqrt{2} \left(\frac{1}{\sqrt{2}} \Delta_1' \right) \Big|_{D^+ \to \pi^+ \pi^0} \end{split}$$

$$\begin{split} 2\Delta_{1}' + \Delta_{2}' \Big|_{D^{0} \to \pi^{+}\pi^{-}} &- \sqrt{2} \left(\frac{1}{2} \Delta_{2}' \right) \Big|_{D^{0} \to \pi^{0}\pi^{0}} \neq -\sqrt{2} \left(-\Delta_{2}' \right) \Big|_{D^{+} \to \pi^{+}\pi^{0}} \\ & \checkmark \\ (\Delta_{1}' + \Delta_{2}') \Big|_{D^{0} \to \pi^{+}\pi^{-}} &- \sqrt{2} \left(\sqrt{2} \Delta_{1}' + \frac{1}{\sqrt{2}} \Delta_{2}' \right) \Big|_{D^{0} \to \pi^{0}\pi^{0}} = -\sqrt{2} \left(\frac{1}{\sqrt{2}} \Delta_{1}' \right) \Big|_{D^{+} \to \pi^{+}\pi^{-}} \end{split}$$

FSI rescattering

Tool -> Basic

3. Recent theoretical progresses

- Lifetimes H.Y.Cheng, Shi, 2019
- Form factors
- Heavy diquark effective theory

Z.X.Zhao, Y.J.Shi, X.H.Hu, W.Wang, 2018, 2019

Y.J.Shi, Z.X.Zhao, W.Wang, 2020

Summary and Outlook

- Doubly charmed baryon is observed by LHCb
- Decay properties play an important role in the observation
- Theory-Experiment collaboration is essential
- Further studies:
- 1.Discovery potentials of Xi_cc^+, Omega_cc^+
 2.Discovery potentials of Xi_bc, Omega_bc
 3.Semileptonic decays
 4.Effective theory of doubly heavy baryons
 5.Lifetimes?
 6.New physics and CPV?
 7.Omega_ccc?

Thank you very much!