Demystifying the two-pole structure

Zhiguang Xiao
Collaborators: Zhi-yong Zhou
Based on: Arxiv:2008.02684,Arxiv:2008.08002,ZYZ\&ZX

September 4, 2020

Outline

Quark model
Quark pair creation model \& Form factor

Nonrelativistic Friedrichs Model

Relativistic Generalization: Friedrichs \& QPC

Two-pole structure
Conclusion \& Outlook

Appendix: Unitarity \& Riemann Sheets \& Poles

Quark model

Quark Potential Model

One Gluon exchange potential plus confinement (Godfrey-Isgur, PRD 32,189(1985)):

$$
H=H_{0}+V, \quad V=H_{i j}^{c o n f}+H_{i j}^{h y p}+H_{i j}^{s o}+H_{A}
$$

- Pros: Including the relativistic correction, it can describe the light meson spectra as well as heavy ones.
- Cons: The low lying 0^{+}spectrum, $\sigma, \kappa, f_{0}(980), a_{0}(980)$, and states above the open flavor threshold.
- Reason: it does not include the effects of the interaction between hadrons in the spectrum

- The lowest 0^{++}isoscalar is 1.09 GeV .
- No $\sigma(500)$.

- The lowest 0^{++}isovector is 1.09 GeV .
- No $a_{0}(980)$.

- No κ.

red ones are Gl's prediction.

Unitarized quark model

Ann.Phys.123(1979),1; NPB203(1982)268; PRL,49(1982),624; Z.Phys, C61(1994),525, Törnqvist;Z.Phys.C30, 615(1986),Beveren et al. ;PRD83(2011),014010,Zhou\&ZX

- Assume that $q \bar{q}$ bare bound states (seeds) generated by QCD are coupled to the pseudoscalar mesons.
- Take into account the hadron loop effect in the propagators of the bare states.

$$
\begin{aligned}
P & =\frac{1}{m_{0}-s+\Pi(s)} \\
\operatorname{Re\Pi }(s) & =\frac{1}{\pi} \mathcal{P} \int_{s_{t h}}^{\infty} d z \frac{\operatorname{Im} \Pi(z)}{z-s} \\
\operatorname{Im} \Pi(s) & =-\sum_{i} G(s)^{2}=-\sum_{i} g_{i}^{2} \frac{k_{i}(s)}{\sqrt{s}} F_{i}(s)^{2} \theta\left(s-s_{t h, i}\right)
\end{aligned}
$$

$$
F_{i}(s)=\exp \left[-k_{i}^{2}(s) / 2 k_{0}^{2}\right] \text { form factor }
$$

Unitarized quark model

- Coupled channel effect: α, β the bare states, i, j diffferent channels

$$
\begin{aligned}
T_{i j} & =\sum_{\alpha, \beta} G_{i \alpha} P_{\alpha \beta} G_{j \beta}^{*}, \\
\left\{P^{-1}\right\}_{\alpha \beta}(s) & =\left(m_{0, \alpha}^{2}-s\right) \delta_{\alpha \beta}+\Pi_{\alpha \beta}(s), \\
\operatorname{Im} \Pi_{\alpha \beta}(s) & =-\sum_{i} G_{i \alpha}(s) G_{\beta i}^{*}(s)=-\sum_{i} g_{\alpha i} g_{\beta i} \frac{k_{i}(s)}{\sqrt{s}} F_{i}^{2}(s) \theta\left(s-s_{t h, i}\right), \\
\operatorname{Re} \Pi_{\alpha \beta}(s) & =\frac{1}{\pi} \mathcal{P} \int_{s_{t h}}^{\infty} d z \frac{\operatorname{Im} \Pi_{\alpha \beta}(z)}{z-s}
\end{aligned}
$$

- There can be mixing between α and β states by coupling to the same channel.
- This T matrix satisfies the Unitarity automatically.
- A simple model describing the Scalar-Pseudoscalar-Pseudoscalar interaction including the OZI violation interaction:

$$
\begin{aligned}
& \mathcal{L}_{S P P}=\alpha \operatorname{Tr}[S P P]+\beta \operatorname{Tr}[S] \operatorname{Tr}[P P]+\gamma \operatorname{Tr}[S] \operatorname{Tr}[P] \operatorname{Tr}[P] . \\
& S=\left(\begin{array}{ccc}
\frac{a^{0}+f_{n}}{\sqrt{2}} & a^{+} & \kappa^{+} \\
a^{-} & \frac{\left(-a^{0}+f_{n}\right)}{\bar{\kappa}^{2}} & \kappa^{0} \\
\kappa^{-} & \bar{\kappa}_{s}^{0}
\end{array}\right), P=\left(\begin{array}{ccc}
\frac{\sqrt{3} \pi^{0}+\eta 8}{\sqrt{6}} & \pi^{+} & \kappa^{+} \\
\pi^{-} & \frac{-\sqrt{3} \pi^{0}+\eta_{8}}{\sqrt{6}} & K^{0} \\
\kappa^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}} \eta_{8}
\end{array}\right)+\frac{\eta_{1}}{\sqrt{3}}, \\
& f_{n}=n \bar{n} \equiv(u \bar{u}+d \bar{d}) / \sqrt{2} \text { and } f_{s}=s \bar{s} .
\end{aligned}
$$

- Also consider the isospin breaking effect and $\eta \eta^{\prime}$ mixing.
- Combined fit of three cases: $I=\frac{1}{2}, K \pi ; I=0, \pi \pi ; I=1, \pi \eta$ S-wave scattering.

Numerical Results

- $I=1 / 2, K \pi$ S-wave: three poles generated by $u \bar{s}$ state

$$
\begin{aligned}
\sqrt{s^{I I}} & =0.767_{ \pm 0.009}-i 0.308_{ \pm 0.035} \\
\sqrt{s^{I I I}} & =1.456_{ \pm 0.018}-i 0.164_{ \pm 0.026}, \\
\sqrt{s^{I V}} & =1.890_{ \pm 0.029}-i 0.296_{ \pm 0.014},
\end{aligned} \quad\left(K_{0}^{*}(1430) \text { from seed, shadow }\right)
$$

Numerical Results

- $\quad I=0$, all poles generated by $n \bar{n}$ and $s \bar{s}$ have the corresponance in PDG

$$
\begin{aligned}
\sqrt{s^{I I}}=0.430_{ \pm 0.040}-i 0.249_{ \pm 0.075}, & (\sigma(500)), \quad \sqrt{s^{I I}}=0.986_{ \pm 0.015}-i 0.023_{ \pm 0.022}, \quad\left(f_{0}(980)\right) \\
\sqrt{s^{I V}}=1.467_{ \pm 0.035}-i 0.228_{ \pm 0.064}, & \left(f_{0}(1370)\right), \quad \sqrt{s^{V}}=1.577_{ \pm 0.040}-i 0.306_{ \pm 0.023}, \quad\left(f_{0}(1500)\right. \\
\sqrt{s^{V I}}=1.935_{ \pm 0.028-i 0.289_{ \pm 0.013},}, & \left(f_{0}(2020)\right),
\end{aligned}
$$

- $f_{0}(1370):$ PDG, $1200-1500 \mathrm{MeV}$, Belle 1.47 GeV (PRD78,052004).
- Not including $\rho \rho, 4 \pi$ effects.

Numerical Results

- Poles:

$$
\begin{aligned}
\sqrt{s^{I I}} & =0.792_{ \pm 0.015}-i 0.292_{ \pm 0.060}, \quad\left(a_{0}(980)\right) \\
\sqrt{s^{I I I}} & =1.491_{ \pm 0.034}-i 0.133_{ \pm 0.038}, \\
\sqrt{s^{I V}} & =1.831_{ \pm 0.027}-i 0.265_{ \pm 0.014},
\end{aligned}
$$

- $a_{0}(1830)$ predicted, maybe related to $a_{0}(1950)\left(a_{0}(2020)\right)$ seen by Brystal Barrel Collab. (PLB452,173)

LARGE N_{c} TRAJECTORIES OF RESONANCES

- $\sigma, \kappa, a_{0}(980), f_{0}(980)$ move farther away from the real axis.
- $\sigma, \kappa, a_{0}(980), f_{0}(980)$: Dynamically generated by the interaction between seeds and pseudoscalars.

What we learned

- A whole picture: $q \bar{q}$ interaction with two particle continuum \rightarrow dynamically generated state.
- Pole from Seed + Dynamically generated pole: Two-Pole structures.
- $\sigma, \kappa, a_{0}(980), f_{0}(980)$ nonet are dynamically generated different from the interaction of seeds and continua.
- Shadow poles in different sheets from the same seed.

Problems

The model is too simple

- Seed positions are fitted: should be predicted by quark model - Gl model.
- The form factor is put by hand, couplings are fitted: should come from dynamics.
- How to understand the dynamically generated state: the mechanism.
- Dynamically generated states: relation with the bare states and continuum states?

Quark pair creation model \& Form factor

Bare from GI \& Dynamical Form-factor, QPC

 PRD84,(2011)034023, EPJA,50(2013), 125 ZYZ, ZXConsider the inverse propagator: for $q_{1} \bar{q}_{2}$ meson, m_{0} bare mass

$$
\begin{aligned}
\mathbb{P}^{-1}(s) & =m_{0}^{2}-s+\Pi(s)=m_{0}^{2}-s+\sum_{n} \Pi_{n}(s), \\
\operatorname{Re} \Pi_{n}(s) & =\frac{1}{\pi} \mathcal{P} \int_{s t h, n}^{\infty} \mathrm{d} z \frac{\operatorname{Im} \Pi_{n}(z)}{(z-s)},
\end{aligned}
$$

- Bare mass from GI : Corrections to GI spectrum
- Dynamically form factor: QPC(3P0) model, nonrelativistic, only for heavy meson. (PRD29(1984),110, Törnqvist)

Dynamical Form factor: QPC

Three-vertex: Quark Pair Creation model (3P0), creation of a quark-antiquark pair $\left(q_{3} \bar{q}_{4}\right)$ from the vacuum, (PRD53(1996),3700,Blundell,Godfrey)

$$
T=-3 \gamma \sum_{m}\langle 1 m 1-m \mid 00\rangle \int d^{3} \overrightarrow{p_{3}} d^{3} \overrightarrow{p_{4}} \delta^{3}\left(\overrightarrow{p_{3}}+\overrightarrow{p_{4}}\right) \mathcal{Y}_{1}^{m}\left(\frac{\overrightarrow{\beta_{3}}-\overrightarrow{p_{4}}}{2}\right) \chi_{1-m}^{34} \phi_{0}^{34} \omega_{0}^{34} b_{3}^{\dagger}\left(\overrightarrow{p_{3}}\right) d_{4}^{\dagger}\left(\overrightarrow{p_{4}}\right),
$$

$\langle B C| T|A\rangle=\delta^{3}\left(\vec{P}_{f}-\vec{P}_{i}\right) \mathcal{M}^{M_{J_{A}}} M_{J_{B}}^{M_{J_{C}}}$.

Once subtracted dispersion relation:

$$
\mathbb{P}^{-1}(s)=m_{p o t}^{2}-s+\sum_{n} \frac{s-s_{0}}{\pi} \int_{s_{t h, n}}^{\infty} \mathrm{d} z \frac{\operatorname{Im} \Pi_{n}(z)}{\left(z-s_{0}\right)(z-s)}
$$

- Wave function: SHO
- We discussed the D, D_{s} (PRD84,(2011)034023), and $c \bar{c}$ spectra (EPJA,50(2013), 125 ZYZ, ZX).

Nonrelativistic Friedrichs Model

Understanding the dynamical pole:Friedrichs

 MODEL[Commun. Pure Appl. Math.,1(1948),361, Friedrichs]$$
H=H_{0}+V
$$

- One bare state $|1\rangle$ and a continuum state $|\omega\rangle$: free Hamiltonian

$$
H_{0}=\omega_{0}|1\rangle\langle 1|+\int_{0}^{\infty} \omega|\omega\rangle\langle\omega| \mathrm{d} \omega
$$

- Interaction:

$$
V=\lambda \int_{0}^{\infty}\left[f(\omega)|\omega\rangle\langle 1|+f^{*}(\omega)|1\rangle\langle\omega|\right] \mathrm{d} \omega
$$

This model is exactly solvable.

Solutions:

Eigenvalue equation:

$$
H|\Psi(E)\rangle=\left(H_{0}+V\right)|\Psi\rangle=E|\Psi(E)\rangle
$$

- Continuum: Eigenvalue $E>0$, real Solution: define

$$
\begin{gathered}
\eta^{ \pm}(E)=E-\omega_{0}-\lambda^{2} \int_{0}^{\infty} \frac{f(\omega) f^{*}(\omega)}{E-\omega \pm i \epsilon} \mathrm{~d} \omega \\
\left|\Psi_{ \pm}(E)\right\rangle=|E\rangle+\lambda \frac{f^{*}(E)}{\eta^{ \pm}(E)}\left[|1\rangle+\lambda \int_{0}^{\infty} \frac{f(\omega)}{E-\omega \pm i \epsilon}|\omega\rangle \mathrm{d} \omega\right]
\end{gathered}
$$

- S-matrix:

$$
S\left(E, E^{\prime}\right)=\delta\left(E-E^{\prime}\right)\left(1-2 \pi i \frac{\lambda f(E) f^{*}(E)}{\eta^{+}(E)}\right)
$$

- Discrete states:The zero point of $\eta(E)$ corresponds to eigenvalues of the full Hamiltonian - discrete states.

Discrete state solutions:Bound states

$$
\begin{array}{r}
\eta^{I}(E)=E-\omega_{0}-\lambda^{2} \int_{0}^{\infty} \frac{f(\omega) f^{*}(\omega)}{E-\omega} \mathrm{d} \omega=0 \\
\eta^{I I}(E)=\eta^{I}(z)-2 i \pi G(z), \quad G \equiv \lambda^{2} f(E) f^{*}(E)
\end{array}
$$

- Bound states: solutions on the first sheet real axis below the threshold.

$$
\left|z_{B}\right\rangle=N_{B}\left(|1\rangle+\lambda \int_{0}^{\infty} \frac{f(\omega)}{z_{B}-\omega}|\omega\rangle \mathrm{d} \omega\right)
$$

where $N_{B}=\left(\eta^{\prime}\left(z_{B}\right)\right)^{-1 / 2}=\left(1+\lambda^{2} \int d \omega \frac{|f(\omega)|^{2}}{\left(z_{B}-\omega\right)^{2}}\right)^{-1 / 2}$, such that $\left\langle z_{B} \mid z_{B}\right\rangle=1$.

- Elementariness: $Z=N_{B}^{2}$;

Compositeness: $X=N_{B}^{2} \lambda^{2} \int d \omega \frac{|f(\omega)|^{2}}{\left(z_{B}-\omega\right)^{2}}$.

- Eg. If $\omega_{0}<0$, there could be a bound state. In the weak coupling limit, it $\rightarrow|1\rangle$,
- Eg. there could also be dynamically generated bound state in the strong coupling.

Discrete state solutions:Virtual states

- Virtual states: Solutions on the second sheet real axis below the threshold.

$$
\left|z_{v}^{ \pm}\right\rangle=N_{v}^{ \pm}\left(|1\rangle+\lambda \int_{0}^{\infty} \frac{f(\omega)}{\left[z_{v}-\omega\right]_{ \pm}}|\omega\rangle \mathrm{d} \omega\right), \quad\left\langle\tilde{z}_{v}^{ \pm}\right|=\left\langle z_{v}^{\mp}\right|
$$

where

$$
N_{v}^{-}=N_{v}^{+*}=\left(\eta^{\prime+}\left(z_{v}\right)\right)^{-1 / 2}=\left(1+\lambda^{2} \int d \omega \frac{|f(\omega)|^{2}}{\left[\left(z_{v}-\omega\right)^{2}\right]^{2}}\right)^{-1 / 2}
$$

$$
\text { such that }\left\langle\tilde{z}_{v}^{ \pm} \mid z_{v}^{ \pm}\right\rangle=1
$$

- When $\omega_{0}<0$, a bound state generated from $|1\rangle$ is always accompanied with a virtual state in weak coupling.

Discrete state solutions:Virtual states PRD94(2016),076006, ZYZ\&ZX

- Dynamical virtual state comes from the singularity of the form factor, analytically continued $G(\omega)=|f(\omega)|^{2}$:

$$
\begin{aligned}
\eta^{I} & =z-\omega_{0}-\lambda^{2} \int_{0}^{\infty} \frac{|f(\omega)|^{2}}{z-\omega} \mathrm{d} \omega \\
\eta^{I I}(\omega) & =\eta^{I}(\omega)+2 \pi i \lambda^{2} G^{I I}(\omega)=\eta^{I}(\omega)-2 \lambda^{2} \pi i G(\omega),
\end{aligned}
$$

- Virtual state generated from the bare states: $\omega_{0}<0$

Discrete state solutions: Resonance

- Resonant states: $\omega_{0}>$ threshold, the discrete state becomes a pair of solutions z_{R}, z_{R}^{*}, on the second sheet of the complex plane. $\hat{H}\left|z_{R}\right\rangle=z_{R}\left|z_{R}\right\rangle$

$$
\begin{aligned}
\left|z_{R}\right\rangle & =N_{R}\left(|1\rangle+\lambda \int_{0}^{\infty} \mathrm{d} \omega \frac{f(\omega)}{\left[z_{R}-\omega\right]_{+}}|\omega\rangle\right), \\
\left|z_{R}^{*}\right\rangle & =N_{R}^{*}\left(|1\rangle+\lambda \int_{0}^{\infty} \mathrm{d} \omega \frac{f(\omega)}{\left[z_{R}^{*}-\omega\right]_{-}}|\omega\rangle\right),
\end{aligned}
$$

GENERALIZATION:JMP.58(2017),062110;JMP58(2017), 072102; ZYZ\&ZX

To use this model in the real world

- Include more discrete states and more continua: coupled channel interaction.
- Partial wave decomposition: The angular momentum space states can be expressed in the Friedrichs model.
- Include interaction among continuum: in general not solvable.

$$
\begin{aligned}
H= & \sum_{i=1}^{D} M_{i}|i\rangle\langle i|+\sum_{i=1}^{C} \int_{M_{i, t h}}^{\infty} d \omega_{i} \omega_{i}\left|\omega_{i} ; i\right\rangle\left\langle\omega_{i} ; i\right| \\
& +\sum_{i_{2}, i_{1}} \int_{M_{i_{1}, t h}} \mathrm{~d} \omega^{\prime} \int_{M_{i_{2}, t h}} \mathrm{~d} \omega f_{i_{2}, i_{1}}\left(\omega^{\prime}, \omega\right)\left|\omega^{\prime} ; i_{2}\right\rangle\left\langle\omega ; i_{1}\right| \\
& +\sum_{i=1}^{D} \sum_{j=1}^{C} \int_{M_{j, t h}} d \omega g_{i, j}(\omega)|i\rangle\langle\omega ; j|+\text { h.c. }
\end{aligned}
$$

Application: $X(3872)$, PRD96(2017),054031; ZYz\& $z x$

Application:

- Using the Gl's bare mass and wave function as input.
- Using the QPC model to provide the form factor.
- We can calculate the η function and solve $\eta(z)=0$
- Coupling bare $\chi_{c 1}(2 P)(3953 \mathrm{MeV})$ with $D D^{*}, D^{*} D^{*}$.
- $X(3872) \& X(3940)$ may be two-pole structure: $X(3872)$, natrually dynamically generated; $\chi_{c 1}(2 P)$ seed $\rightarrow 3917-45 i \mathrm{MeV} \sim$ may be related to $X(3940)$.
- If $X(3872)$ is a bound state: it has a large portion of $D D^{*}$.
- This information helps us in understanding its decay. PRD100(2019),094025; PRD97(2018), 034011, ZYZ\&ZX
- Also application in $B B^{*}$ system: the $X(3872)$ counterpart PRD99 (2019),034005; ZYZ\& ZX

Problems

- Nonrelativistic Friedrichs model: the dispersion integrel is in E not in s as in the relativistic dispersion relation.

$$
\eta^{+}(E)=E-\omega_{0}-\lambda^{2} \int_{0}^{\infty} \frac{f(\omega) f^{*}(\omega)}{E-\omega+i \epsilon} \mathrm{~d} \omega
$$

Possible solution:
introducing the creation \& annilation operators.

- The QPC model is non-relativistic: can not discribe the interaction between low lying mesons with light quarks.

Possible solution: the relativistic kinetics and Lorentz boosts

Relativistic Generalization: Friedrichs \& QPC

Relativistic free two particle states:

JMP4(1963),490, Macfarlane; Nuo.Cim,34,1289,McKerrell
We need the state in the angular momentum representation.

- In c.m. frame, choose $w^{2}=\left(q_{1}+q_{2}\right)^{2}$, boost the two particle system to have total 3 -momentum $\vec{p}, E=\left(\vec{p}^{2}+w^{2}\right)^{1 / 2}$.
- In c.m. frame, choose a z direction, we can define orbital angular momentum l and total spin s, and total angular momentum j, m. Then, we boost it to have 3 -momantum \vec{p}.

$$
\begin{aligned}
& |\vec{p} m[w j] l s\rangle=\left(\frac{w}{2 q_{1}^{0} q_{2}^{0}}\right)^{1 / 2}\left(\frac{2 l+1}{4 \pi}\right)^{1 / 2} \sum_{l_{z} s_{z}} C\left(l s j l_{z} s_{z} m\right) \\
& \times \int d \varphi \sin \theta d \theta D_{l_{z} 0}^{l *}(\varphi, \theta, 0) \sum_{\mu_{1} \mu_{2}} \sum_{\nu_{1}, \nu_{2}} C\left(s_{1} s_{2} s \nu_{1} \nu_{2} s_{z}\right) D_{\mu_{1} \nu_{1}}^{s_{1}}\left(\bar{R}\left(p_{1}, \ell(p)\right)\right) \\
& \quad \times D_{\mu_{2} \nu_{2}}^{s_{2}}\left(\bar{R}\left(p_{2}, \ell(p)\right)\right)\left|p_{1} \mu_{1} p_{2} \mu_{2}\right\rangle
\end{aligned}
$$

- We treat the two particle states together, using an annihilation and creation operator: $B_{\vec{p} m[w j] l s}^{\dagger}|0\rangle=|\vec{p} m[w j] l s\rangle$

$$
\begin{aligned}
& {\left[B_{\vec{p}^{\prime} m^{\prime}\left[w^{\prime} j^{\prime}\right] l^{\prime} s^{\prime}}, B_{\vec{p} m[w j] l s}^{\dagger}\right]=\delta^{(3)}\left(\vec{p}-\vec{p}^{\prime}\right) \frac{\delta\left(q-q^{\prime}\right)}{q^{2}} \delta_{m m^{\prime}} \delta_{s s^{\prime}} \delta_{l l^{\prime}} \delta_{j j^{\prime}} } \\
&=\beta^{-1} \delta^{(3)}\left(\vec{p}-\vec{p}^{\prime}\right) \delta\left(E-E^{\prime}\right) \delta_{m m^{\prime}} \delta_{s s^{\prime}} \delta_{l l^{\prime}} \delta_{j j^{\prime}}, \quad \beta(E)=\frac{q q_{1}^{0} q_{2}^{0} E}{w^{2}}
\end{aligned}
$$

Relativisitc Friedrichs-Lee model

JMP39(1998),2995,Antoniou; Arxiv:2008.02684,ZYZ\&ZX

Hamiltonian:

$$
\begin{aligned}
P_{0}= & \int d^{3} \mathbf{k} \beta(E) d E E B^{\dagger}(E, \mathbf{k}) B(E, \mathbf{k})+\int d^{3} \mathbf{k} \omega(\mathbf{k}) a^{\dagger}(\mathbf{k}) a(\mathbf{k}) \\
& +\int d^{3} \mathbf{k} \beta(E) d E \alpha_{0}(E, \mathbf{k})\left(a(\mathbf{k})+a^{\dagger}(-\mathbf{k})\right)\left(B^{\dagger}(E, \mathbf{k})+B(E,-\mathbf{k})\right) \\
\omega(\mathbf{k})= & \sqrt{m^{2}+\mathbf{k}^{2}}, \quad \alpha(E, \mathbf{k})=\alpha^{*}(E,-\mathbf{k})
\end{aligned}
$$

α : interaction form factor between the discret state and the continuum.
Eigenvalue problem: find b^{\dagger} s.t.

$$
\left[H, b^{\dagger}(E)\right]=E b^{\dagger}(E)
$$

Relativisitc Friedrichs-Lee model

Solution:

- Continuum: $E>E_{\text {th }}$

$$
\begin{aligned}
b_{i n}^{\dagger}(E, \mathbf{p})= & B^{\dagger}(E, \mathbf{p})-\frac{2 \omega(\mathbf{p}) \alpha(k(E, \mathbf{p}))}{\eta_{+}(E, \mathbf{p})}\left[\int _ { M _ { t h } } d E ^ { \prime } \beta (E ^ { \prime }) \alpha (k (E ^ { \prime } , \mathbf { p })) \left[\frac{B^{\dagger}\left(E^{\prime}, \mathbf{p}\right)}{\left(E^{\prime}-E-i 0\right)}\right.\right. \\
& \left.\left.-\frac{B\left(E^{\prime},-\mathbf{p}\right)}{\left(E^{\prime}+E+i 0\right)}\right]-\frac{1}{2 \omega(\mathbf{p})}\left((\omega(\mathbf{p})+E) a^{\dagger}(\mathbf{p})-(\omega(\mathbf{p})-E) a(-\mathbf{p})\right)\right] \\
\eta_{ \pm}(s)= & s-\omega_{0}^{2}-\int_{s_{t h}} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{s-s^{\prime} \pm i 0}, \quad \rho=2 \omega_{0} \frac{k \varepsilon_{1} \varepsilon_{2}}{W}|\alpha(k)|^{2}
\end{aligned}
$$

- S-matrix

$$
S\left(E, \mathbf{p} ; E^{\prime}, \mathbf{p}^{\prime}\right)=\delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \delta\left(E-E^{\prime}\right)\left(1-2 \pi i \frac{\rho(s)}{\eta_{+}(s)}\right)
$$

- Discrete state: at the solution of $\eta(z)=0$

$$
\begin{aligned}
b^{\dagger}\left(E_{0}, \mathbf{p}\right)= & N\left[\frac{\left(\omega(\mathbf{p})+E_{0}\right)}{\sqrt{2 \omega(\mathbf{p})}} a^{\dagger}(\mathbf{p})-\frac{\left(\omega(\mathbf{p})-E_{0}\right)}{\sqrt{2 \omega(\mathbf{p})}} a(-\mathbf{p})\right. \\
& \left.-\sqrt{2 \omega(\mathbf{p})} \int_{M_{\text {th }}} d E^{\prime} \beta\left(E^{\prime}\right)\left[\frac{\alpha\left(k\left(E^{\prime}, \mathbf{p}\right)\right)}{E^{\prime}-E_{0}} B^{\dagger}\left(E^{\prime}, \mathbf{p}\right)-\frac{\alpha\left(k\left(E^{\prime}, \mathbf{p}\right)\right)}{E^{\prime}+E_{0}} B\left(E^{\prime},-\mathbf{p}\right)\right]\right],
\end{aligned}
$$

For bound state $N=\frac{1}{\sqrt{2 E_{0}}}\left[1+2 \omega(\mathbf{p}) \int_{M_{t h}} d E^{\prime} \beta\left(E^{\prime}\right) \frac{2 E^{\prime}\left|\alpha\left(k\left(E^{\prime}, \mathbf{p}\right)\right)\right|^{2}}{\left(E^{\prime}+E_{0}\right)^{2}\left(E^{\prime}-E_{0}\right)^{2}}\right]^{-1 / 2}$

Relativisitc QPC

PRC86(2012),055205,Fuda; Arxiv:2008.02684,ZYZ\&ZX

- A $q \bar{q}$ bound state can be expressed using a Mock state:

$$
\begin{aligned}
& \left|A\left(\tilde{W}^{2 s_{A}+1} l_{A j_{A} m_{j_{A}}}\right)(\mathbf{p})\right\rangle=\sum_{m_{l} m_{s}} \sum_{\substack{m_{1} m_{2} \\
m_{1}^{\prime} m_{2}^{\prime}}} \int d^{3} \mathbf{k} \psi_{l_{A} m_{l_{A}}}^{A}(\mathbf{k})\left|\mathbf{p}_{1}, s_{1} m_{1}^{\prime}\right\rangle \otimes\left|\mathbf{p}_{2}, s_{2} m_{2}^{\prime}\right\rangle \phi_{A}^{12} \omega_{A}^{12} \\
& \times D_{m_{1}^{\prime} m_{1}}^{s_{1}}\left[r_{c}\left(l_{c}(p), k_{1}\right)\right] D_{m_{2}^{\prime} m_{2}}^{s_{2}}\left[r_{c}\left(l_{c}(p), k_{2}\right)\right]\left\langle s_{1} s_{2} m_{1} m_{2} \mid s_{A} m_{s_{A}}\right\rangle\left\langle l_{A} s_{A} m_{l_{A}} m_{s_{A}} \mid j_{A} m_{j_{A}}\right\rangle \\
& \times\left(\frac{\varepsilon_{1}\left(\mathbf{p}_{1}\right)}{\varepsilon_{1}(\mathbf{k})} \frac{\varepsilon_{2}\left(\mathbf{p}_{2}\right)}{\varepsilon_{2}(-\mathbf{k})} \frac{W_{12}(\mathbf{k})}{E_{12}(\mathbf{p}, \mathbf{k})}\right)^{1 / 2} .
\end{aligned}
$$

- Quark pair creation: $H_{I}=\gamma \int \mathrm{d}^{3} x \bar{\psi}(x) \psi(x), \quad t=0$,

$$
\begin{aligned}
& T=-\sqrt{8 \pi} \gamma \int \frac{d^{3} \mathbf{p}_{3} d^{3} \mathbf{p}_{4}}{\sqrt{\varepsilon_{3}\left(\mathbf{p}_{3}\right) \varepsilon_{4}\left(\mathbf{p}_{4}\right)}} \delta^{(3)}\left(\mathbf{p}_{3}+\mathbf{p}_{4}\right) \sum_{m} \sum_{m_{3} m_{4}}\langle 1, m, 1,-m \mid 0,0\rangle \\
& \times \mathcal{Y}_{1}^{m}\left(\frac{\mathbf{p}_{3}-\mathbf{p}_{4}}{2}\right)\left\langle 1 / 2, m_{3}, 1 / 2, m_{4} \mid 1,-m\right\rangle \phi_{0}^{34} \omega_{0}^{34} b_{m_{3}}^{\dagger}\left(\mathbf{p}_{3}\right) d_{m_{4}}^{\dagger}\left(\mathbf{p}_{4}\right)
\end{aligned}
$$

- From the matrix element $\langle B C| T|A\rangle$, we obtain form factor α for the Friedrichs model.

Relativistic Friedrichs-QPC scheme

- Relativistic Friedrichs model: Inverse resolvent, $\eta(z)$

$$
\eta(s)=s-\omega_{0}^{2}-\int_{s_{t h}} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{s-s^{\prime}}, \quad \rho=2 \omega_{0} \frac{k \varepsilon_{1} \varepsilon_{2}}{W}|\alpha(k)|^{2}
$$

Solve $\eta(z)=0$, find poles of S-matrix: resonance, bound state, virtual state.

- Relativized quark model: GI, bare mass(a little tuned), wave function
- Relativistic QPC: only one parameter γ
- Spectrum: Broader range, inluding the light meson, and heavy meson together.

Two-pole structures

Two pole structures

When $\gamma=4.3 \mathrm{GeV}$, Single channel approximation: general appearance of two-pole structures

"discrete"	"continuum"	GI mass	Input	poles	experiment states	PDG values [15]
$\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}\left(1^{3} P_{0}\right)$	$(\pi \pi)_{I=0}$	1.09	1.3	$\sqrt{s_{r 1}}=1.34-0.29 i$	$f_{0}(1370)$	$1.35^{ \pm 0.15}-0.2^{ \pm 0.05} i$
				$\sqrt{s_{r 2}}=0.39-0.26 i$	$f_{0}(500)$	$0.475^{ \pm 0.075}-0.275^{ \pm 0.075} i$
$u \bar{s}\left(1^{3} P_{0}\right)$	$(\pi K)_{I=\frac{1}{2}}$	1.23	1.42	$\sqrt{s_{r 1}}=1.41-0.17 i$	K_{0}^{*} (1430)	$1.425^{ \pm 0.05}-0.135^{ \pm 0.04}{ }_{i}$
				$\sqrt{s_{r 2}}=0.66-0.34 i$	$K_{0}^{*}(700)$	$0.68^{ \pm 0.05}-0.30^{ \pm 0.04} i$
$s \bar{s}\left(1^{3} P_{0}\right)$	$K \bar{K}$	1.35	1.68	$\sqrt{S_{r 1}}=1.71-0.16 i$	$f_{0}(1710)$	$1.704^{ \pm 0.012}-0.062^{ \pm 0.009} i$
				$\sqrt{s_{b}}=0.98, \sqrt{s_{v}}=0.19$	$f_{0}(980)$	$0.99^{ \pm 0.02}-0.028^{ \pm 0.023} i$
$\frac{u \bar{u}-d \bar{d}}{\sqrt{2}}\left(1^{3} P_{0}\right)$	$\pi \eta$	1.09	1.3	$\sqrt{s_{r 1}}=1.26-0.14 i$	$a_{0}(1450)$	$1.474^{ \pm 0.019}-0.133^{ \pm 0.007} i$
				$\sqrt{s_{r 2}}=0.70-0.42 i$	$a_{0}(980)$	$0.988^{ \pm 0.02}-0.038^{ \pm 0.012} i$
$c \bar{u}\left(1^{3} P_{0}\right)$	$D \pi$	2.4	2.4	$\sqrt{s_{r 1}}=2.58-0.24 i$	$D_{0}^{*}(2300)$	$2.30^{ \pm 0.019}-0.137^{ \pm 0.02} i$
				$\sqrt{s_{r 2}}=2.08-0.10 i$		
$c \bar{s}\left(1^{3} P_{0}\right)$	DK	2.48	2.48	$\sqrt{s_{r 1}}=2.80-0.23 i$		
				$\sqrt{s_{b}}=2.24, \sqrt{s_{v}}=1.8$	$D_{s 0}^{*}(2317)$	$2.317^{ \pm 0.0005}-0.0038^{ \pm 0.0038} i_{i}$
$b \bar{u}\left(1^{3} P_{0}\right)$	$\bar{B} \pi$	5.76	5.76	$\sqrt{s_{r 1}}=6.01-0.21 i$		
				$\sqrt{s_{r 2}}=5.56-0.07 i$		
$b \bar{s}\left(1^{3} P_{0}\right)$	$\bar{B} K$	5.83	5.83	$\sqrt{s_{r 1}}=6.23-0.17 i$		
				$\sqrt{s_{b}}=5.66, \sqrt{s_{v}}=5.3$		
$c \bar{c}\left(2^{3} P_{1}\right)$	$D \bar{D}^{*}$	3.95	3.95	$\sqrt{s_{r 1}}=4.01-0.049 i$	X (3940)	
				$\sqrt{s_{b}}=3.785$	$X(3872)$	$3.87169^{ \pm 0.00017}$

Two-Pole structures

Two pole structure, a general phenomenon: when the coupling γ is turned on

- Coupling a seed $q \bar{q}$ state with the nearest open flavor state in S-wave - another new dynamical state ("dynamical pole").
- The seed will move into the second sheet - a pair of resonance poles ("bare pole").
- The dynamical pole come from far away on the second sheet towards the real axis: Resonance or virtual state or /and bound state poles.

Two pole structures: light scalars, Phase SHIFT SUM RULE

Seeds $\frac{u \bar{u}+d \bar{d}}{\sqrt{2}}, u \bar{s}, s \bar{s}, \frac{u \bar{u}-d \bar{d}}{\sqrt{2}}$
$-f_{0}(500) / \sigma, f_{0}(1370) ; K_{0}^{*}(700) / \kappa, K_{0}^{*}(1430) ; f_{0}(980), f_{0}(1710) ;$ $a_{0}(980), a_{0}(1450)$ are two pole structures.

- Phase: one single channel approximation is good, two poles contribute a 180° phase shift.

As $s \rightarrow \infty, T \propto \sin \delta e^{i \delta} \sim \frac{\rho(s)}{\eta_{+}(s)} \rightarrow 0, \delta \rightarrow n \times 180^{\circ}$, Here $n=1$.

$c \bar{u} \mathrm{SEED}, b \bar{u} \mathrm{SEED}$

- $c \bar{u}$ seed couples to $D \pi$: $D_{0}^{*}(2300)$, two broad poles

$$
\begin{array}{cc}
\gamma=4.3: & \sqrt{s_{1}}=2.08-i 0.10 ; \quad \sqrt{s_{2}}=2.58-i 0.24 \\
\gamma=3: \quad \sqrt{s_{1}}=2.21-i 0.28 ; \quad \sqrt{s_{2}}=2.39-i 0.18
\end{array}
$$

- Two-poles From Unitarized χ PT: $D_{0}^{*}(2300)$, two poles PLB582(2004),39,EEK et.al; PLB641(2006),278, FK.Guo, et. al.; PLB,767(2017),465, MA,et.al.:

$$
\sqrt{s_{1}}=2.105-i 0.102 ; \quad \sqrt{s_{2}}=2.451-i 0.134
$$

PRD92(2015),094008,ZH.Guo et.al.:

$$
\sqrt{s_{1}}=2.114-i 0.111 ; \quad \sqrt{s_{2}}=2.473-i 0.140
$$

- $b \bar{u}$ couples to $\bar{B} \pi$:

$$
\begin{aligned}
& \gamma=4.3: \sqrt{s_{1}}=5.556-i 0.07 ; \sqrt{s_{2}}=6.01-i 0.21 \\
& \gamma=3.0: \quad \sqrt{s_{1}}=5.62-i 0.13 ; \quad \sqrt{s_{2}}=5.85-i 0.26
\end{aligned}
$$

Unitarized $\chi \mathrm{PT}$:

$$
\sqrt{s_{1}}=5.537-i 0.116 ; \quad \sqrt{s_{2}}=5.840-i 0.025
$$

- $c \bar{s}$ couples to $D K: D_{s 0}^{*}(2317)$, dynamically generated;

$$
\begin{array}{ll}
\gamma=4.3: \sqrt{s_{b}}=2.24, \quad \sqrt{s_{v}}=1.8, \quad \sqrt{s_{r 1}}=2.80-0.23 i \\
\gamma=3.0: \sqrt{s_{b}}=2.32, \quad \sqrt{s_{v}}=1.9, \quad \sqrt{s_{r 1}}=2.68-0.26 i
\end{array}
$$

- $b \bar{s}$ couples to $\bar{B} K$:

$$
\begin{array}{llll}
\gamma=4.3: & \sqrt{s_{b}}=5.66, & \sqrt{s_{v}}=5.3, & \sqrt{s_{r 1}}=6.23-0.17 i \\
\gamma=3.0: & \sqrt{s_{b}}=5.72, & \sqrt{s_{v}}=5.4, & \sqrt{s_{r 1}}=6.11-0.22 i
\end{array}
$$

- $c \bar{c}\left(2^{3} P_{1}\right)$ couples to $D \bar{D}^{*}: X(3872)$ dynamically generated

$$
\begin{array}{ll}
\gamma=4.3: & \sqrt{s_{b}}=3.785, \\
\gamma=3.0: & \sqrt{s_{r 1}}=4.01-0.049 i \\
s_{b} & 3.84, \\
\sqrt{s_{r}}=3.99-0.045 i
\end{array}
$$

General features of the two pole structure:

Coupling of a seed with a continuum: dynamically generate a new state

- Nontrivial form factor: Scattering of mesons, composite of $q \bar{q}$. Non-local interaction.
- The dynamically generated state may come from far away from the seed: in general from the singularity of the form factor
- If single channel approximation is applicable, the two poles together may roughly contribute a phase shift of 180°.
- Whether the dynamical state is a bound state, virtual state or resonance depend on the specific wave function of the particles in the interation.
- Conjecture: for S-wave coupling of $q \bar{q}$ with the nearest open-flavor continuum, the two-pole structure may be near the physical region and it is highly possible to have observable effect in the experiments.

Conclusion \& Outlook

- Coupling a seed with the continuum when all particles are composite may in general generate a dynamically new state.
- We combine the relativistic Friedrichs model and the relativistic QPC model : this scheme can be applied to both light mesons and heavy mesons.
- $f_{0}(500) / f_{0}(1370), f_{0}(980) / f_{0}(1710), K_{0}^{*}(700) / K_{0}^{*}(1430)$, $a_{0}(980) / a_{0}(1450), X(3872) / X(3940)$, all result from the two-pole mechanism.
- Prediction: $D_{0}^{*}(2210) / D_{0}^{*}(2390), D_{s 0}^{*}(2317) / D_{s 0}^{*}(2680)$, $B_{0}^{*}(5620) / B_{0}^{*}(5850), B_{s 0}^{*}(5720) / B_{s 0}^{*}(6110) . B_{s 0}^{*}(5720)$ should be very narrow.
- There could be other two-pole structures to be discovered.
- Coupled channel generalization.
- This mechanism may be much more general beyond hadron physics.

Thanks!

Appendix

S-Matrix Unitarity

- S-Matrix: $S_{\beta \alpha}=\left\langle\beta_{\text {out }} \mid \alpha_{i n}\right\rangle$
- Unitarity: $S S^{\dagger}=1, \quad S=1+i T$

$$
1=\left(1-i T^{\dagger}\right)(1+i T)=1+i T-i T^{\dagger}+T^{\dagger} T \quad \Rightarrow \quad-i\left(T-T^{\dagger}\right)=T^{\dagger} T
$$

- For initial k_{1}, k_{2} particle,

$$
\left\langle\left\{\vec{q}_{i}\right\}\right| T\left|\vec{k}_{1} \vec{k}_{2}\right\rangle=(2 \pi)^{4} \delta^{(4)}\left(k_{1}+k_{2}-\sum q_{i}\right) \mathcal{M}\left(k_{1}, k_{2} \rightarrow\left\{q_{i}\right\}\right)
$$

- Unitarity: forward scattering

$$
2 \operatorname{Im} \mathcal{M}(a \rightarrow a)=\sum_{f} \int d \Pi_{f} \mathcal{M}^{*}(a \rightarrow f) \mathcal{M}(a \rightarrow f)
$$

- Optical theorem:

$$
\operatorname{Im} \mathcal{M}\left(k_{1}, k_{2} \rightarrow k_{1}, k_{2}\right)=2 E_{c m} p_{c m} \sigma_{\mathrm{tot}}
$$

Partial wave amplitude and unitarity

- Partial wave decomposition for spinless particles amplitude: $2 \rightarrow 2$ amplitude

$$
\begin{aligned}
A_{l}(s) & =\frac{1}{32 \pi} \int_{-1}^{1} d \cos \theta P_{l}(\cos \theta) A(s, t(s, \cos \theta)) \\
A(s, t, u) & =16 \pi \sum_{l}(2 l+1) P_{l}(\cos \theta) A_{l}(s)
\end{aligned}
$$

- Partial wave S-matrix: $S_{l}=1+2 i \rho(s) A_{l}, S_{l}(s) S_{l}^{*}(s)=1$, $\rho(s)=2 k / E$.
- Partial-wave Unitarity:

$$
\operatorname{Im} A(s)=\frac{1}{2 i}(A(s+i \epsilon)-A(s-i \epsilon))=\rho(s)|A(s)|^{2}
$$

- Coupled channel: $S_{i j}=\delta_{i j}+2 i \sqrt{\rho_{i}} A_{i j} \sqrt{\rho_{j}}$

$$
\operatorname{Im} A_{i j}=\sum_{k} A_{i k} \rho_{k}(s) A_{k j}^{*}, \quad \text { for on-shell internal } k \text { states }
$$

Pole, zero of S-matrix and states

The partial wave S-matrix can be analytically continued to the complex s-plane:

- Unitary cut: $s>s_{t h, j}$
- Single channle: $S^{I}=\frac{1}{S^{I I}(s)}$
- First sheet zero \leftrightarrow second sheet pole \rightarrow virtual state, or resonance $s=(M-i \Gamma / 2)^{2}$.
- First sheet pole: on the real axis below threshold, - bound state.
- Coupled channel: Riemann sheets doubled

Dispersion relation

The amplitude $A(s)$ is a real analytic function after analytic continuation:

- Real analytic function: $A\left(z^{*}\right)=A^{*}(z)$
- Unitarity: $\operatorname{Im} A(s) \neq 0$, for $s>z_{R} \Rightarrow$ right hand cut
- Cauchy theorem: if $A(s)$ converges at infinity, no poles on the first sheet

$$
\begin{aligned}
A(z) & =\frac{1}{2 \pi i} \int_{C} d z^{\prime} \frac{A\left(z^{\prime}\right)}{z^{\prime}-z} \\
& =\frac{1}{\pi} \int_{z_{R}} d z^{\prime} \frac{\operatorname{Im} A(z)}{z^{\prime}-z}
\end{aligned}
$$

This is called dispersion relation.

- Once subtracted dispersion relation:

$$
A(z)=A\left(z_{0}\right)+\frac{z-z_{0}}{\pi} \int_{Z_{R}}^{\infty} d z^{\prime} \frac{\operatorname{Im} A\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)\left(z^{\prime}-z\right)}
$$

