DEMYSTIFYING THE TWO-POLE STRUCTURE

Zhiguang Xiao Collaborators: Zhi-yong Zhou Based on: Arxiv:2008.02684,Arxiv:2008.08002,ZYZ&ZX

September 4, 2020

QUARK MODEL

QUARK PAIR CREATION MODEL & FORM FACTOR

NONRELATIVISTIC FRIEDRICHS MODEL

Relativistic Generalization: Friedrichs & QPC

TWO-POLE STRUCTURE

Conclusion & Outlook

Appendix: Unitarity & Riemann Sheets & Poles

Quark model

QUARK POTENTIAL MODEL

One Gluon exchange potential plus confinement (*Godfrey-Isgur, PRD* 32,189(1985)):

$$H = H_0 + V, \quad V = H_{ij}^{conf} + H_{ij}^{hyp} + H_{ij}^{so} + H_A$$

- Pros: Including the relativistic correction, it can describe the light meson spectra as well as heavy ones.
- ► Cons: The low lying 0^+ spectrum, σ , κ , $f_0(980)$, $a_0(980)$, and states above the open flavor threshold.
- Reason: it does not include the effects of the interaction between hadrons in the spectrum

• The lowest 0^{++} isoscalar is 1.09GeV.

 \blacktriangleright No $\sigma(500)$.

▶ The lowest 0^{++} isovector is 1.09 GeV.

▶ No *a*₀(980) .

red ones are GI's prediction.

UNITARIZED QUARK MODEL

Ann.Phys.123(1979),1; NPB203(1982)268; PRL,49(1982),624; Z.Phys,C61(1994),525, Törnqvist;Z.Phys.C30, 615(1986),Beveren et al. ;PRD83(2011),014010,Zhou&ZX

- Assume that qq bare bound states (seeds) generated by QCD are coupled to the pseudoscalar mesons.
- Take into account the hadron loop effect in the propagators of the bare states.

$$P = \frac{1}{m_0 - s + \Pi(s)},$$

$$\operatorname{Re}\Pi(s) = \frac{1}{\pi} \mathcal{P} \int_{s_{th}}^{\infty} dz \frac{\operatorname{Im}\Pi(z)}{z - s}$$

$$\operatorname{Im}\Pi(s) = -\sum_i G(s)^2 = -\sum_i g_i^2 \frac{k_i(s)}{\sqrt{s}} F_i(s)^2 \theta(s - s_{th,i})$$

 $F_i(s) = \exp[-k_i^2(s)/2k_0^2]$ form factor.

UNITARIZED QUARK MODEL

▶ Coupled channel effect: α, β the bare states, *i*, *j* diffferent channels

$$T_{ij} = \sum_{\alpha,\beta} G_{i\alpha} P_{\alpha\beta} G_{j\beta}^*,$$

$$\{P^{-1}\}_{\alpha\beta}(s) = (m_{0,\alpha}^2 - s)\delta_{\alpha\beta} + \prod_{\alpha\beta}(s),$$

$$\operatorname{Im}\Pi_{\alpha\beta}(s) = -\sum_i G_{i\alpha}(s) G_{\beta i}^*(s) = -\sum_i g_{\alpha i} g_{\beta i} \frac{k_i(s)}{\sqrt{s}} F_i^2(s) \theta(s - s_{th,i}),$$

$$\operatorname{Re}\Pi_{\alpha\beta}(s) = \frac{1}{\pi} \mathcal{P} \int_{s_{th}}^{\infty} dz \frac{\operatorname{Im}\Pi_{\alpha\beta}(z)}{z - s}$$

- There can be mixing between α and β states by coupling to the same channel.
- ▶ This *T* matrix satisfies the Unitarity automatically.

SPP INTERACTION

 A simple model describing the Scalar-Pseudoscalar-Pseudoscalar interaction including the OZI violation interaction:

$$\mathcal{L}_{SPP} = \alpha \, Tr[SPP] + \beta \, Tr[S] \, Tr[PP] + \gamma \, Tr[S] \, Tr[P] \, Tr[P].$$

$$\begin{split} s &= \begin{pmatrix} \frac{a^{0} + f_{n}}{\sqrt{2}} & a^{+} & \kappa^{+} \\ a^{-} & \frac{(-a^{0} + f_{n})}{\sqrt{2}} & \kappa^{0} \\ \kappa^{-} & \bar{\kappa}^{0} & f_{s} \end{pmatrix}, P = \begin{pmatrix} \frac{\sqrt{3}\pi^{0} + \eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-\sqrt{3}\pi^{0} + \eta_{8}}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{\kappa}^{0} & -\sqrt{\frac{2}{3}}\eta_{8} \end{pmatrix} + \frac{\eta_{1}}{\sqrt{3}}, \\ f_{n} &= n\bar{n} \equiv (u\bar{u} + d\bar{d})/\sqrt{2} \text{ and } f_{s} = s\bar{s}. \end{split}$$

- Also consider the isospin breaking effect and $\eta\eta'$ mixing.
- Combined fit of three cases: $I = \frac{1}{2}$, $K\pi$; I = 0, $\pi\pi$; I = 1, $\pi\eta$ S-wave scattering.

NUMERICAL RESULTS

► I = 1/2, $K\pi$ S-wave: three poles generated by $u\bar{s}$ state

$$\begin{split} &\sqrt{s^{II}} = 0.767_{\pm 0.009} - i 0.308_{\pm 0.035} \quad (\kappa, \text{Dynamical}), \\ &\sqrt{s^{III}} = 1.456_{\pm 0.018} - i 0.164_{\pm 0.026}, \quad (K_0^*(1430) \text{from seed, shadow}) \\ &\sqrt{s^{IV}} = 1.890_{\pm 0.029} - i 0.296_{\pm 0.014}, \quad (K_0^*(1950) \text{from seed, shadow}) \end{split}$$

NUMERICAL RESULTS

• I = 0, all poles generated by $n\bar{n}$ and $s\bar{s}$ have the correspondence in PDG

$$\begin{split} &\sqrt{s^{II}}=0.430_{\pm 0.040}-i0.249_{\pm 0.075}, \ (\sigma(500)), \ \sqrt{s^{II}}=0.986_{\pm 0.015}-i0.023_{\pm 0.022}, \ (f_0(980)), \\ &\sqrt{s^{IV}}=1.467_{\pm 0.035}-i0.228_{\pm 0.064}, \ (f_0(1370)), \ \sqrt{s^{V}}=1.577_{\pm 0.040}-i0.306_{\pm 0.023}, \ (f_0(1500), \\ &\sqrt{s^{VI}}=1.935_{\pm 0.028}-i0.289_{\pm 0.013}, \ (f_0(2020)), \end{split}$$

▶ $f_0(1370)$: PDG , 1200 - 1500 MeV, Belle 1.47GeV (PRD78,052004).

Not including $\rho\rho$, 4π effects.

NUMERICAL RESULTS

Poles:

$$\begin{split} &\sqrt{s^{II}}=0.792_{\pm0.015}-i0.292_{\pm0.060},~(a_0(980))\\ &\sqrt{s^{III}}=1.491_{\pm0.034}-i0.133_{\pm0.038},~(a_0(1450))\\ &\sqrt{s^{IV}}=1.831_{\pm0.027}-i0.265_{\pm0.014},~. \end{split}$$

▶ $a_0(1830)$ predicted, maybe related to $a_0(1950)(a_0(2020))$ seen by Brystal Barrel Collab. (PLB452,173)

LARGE N_c TRAJECTORIES OF RESONANCES

σ,κ, a₀(980),f₀(980) move farther away from the real axis.
 σ,κ, a₀(980), f₀(980): Dynamically generated by the interaction between seeds and pseudoscalars.

- A whole picture: $q\bar{q}$ interaction with two particle continuum \rightarrow dynamically generated state.
- Pole from Seed + Dynamically generated pole: Two-Pole structures.
- σ,κ, a₀(980), f₀(980) nonet are dynamically generated different from the interaction of seeds and continua.
- Shadow poles in different sheets from the same seed.

PROBLEMS

The model is too simple

- Seed positions are fitted: should be predicted by quark model – GI model.
- The form factor is put by hand, couplings are fitted: should come from dynamics.
- How to understand the dynamically generated state: the mechanism.
- Dynamically generated states: relation with the bare states and continuum states?

Quark pair creation model & Form factor

BARE FROM GI & DYNAMICAL FORM-FACTOR, QPC *PRD84,(2011)034023, EPJA,50(2013),125 ZYZ, ZX*

Consider the inverse propagator: for $q_1 \bar{q}_2$ meson, m_0 bare mass

$$\mathbb{P}^{-1}(s) = m_0^2 - s + \Pi(s) = m_0^2 - s + \sum_n \Pi_n(s),$$

$$1 \quad \int_{-\infty}^{\infty} \operatorname{Im}\Pi_n(z)$$

$$\operatorname{Re}\Pi_n(s) = \frac{1}{\pi} \mathcal{P} \int_{s_{th,n}} \mathrm{d}z \frac{\operatorname{IIIII}_n(z)}{(z-s)},$$

- Bare mass from GI: Corrections to GI spectrum
- Dynamically form factor: QPC(3P0) model, nonrelativistic, only for heavy meson. (*PRD29(1984),110,Törnqvist*)

DYNAMICAL FORM FACTOR: QPC

Three-vertex: Quark Pair Creation model (3P0), creation of a quark-antiquark pair $(q_3\bar{q}_4)$ from the vacuum, (PRD53(1996),3700,Blundell,Godfrey)

$$\begin{split} T &= -3\gamma \sum_{m} \langle 1m1 - m|00\rangle \int d^{3}\vec{p_{3}} d^{3}\vec{p_{4}} \delta^{3}(\vec{p_{3}} + \vec{p_{4}}) \mathcal{Y}_{1}^{m}(\frac{\vec{p_{3}} - \vec{p_{4}}}{2}) \chi_{1 - m}^{34} \phi_{0}^{34} \omega_{0}^{34} b_{3}^{\dagger}(\vec{p_{3}}) d_{4}^{\dagger}(\vec{p_{4}}), \\ \langle BC|T|A\rangle = \delta^{3}(\vec{P_{f}} - \vec{P_{i}}) \mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}. \end{split}$$

Once subtracted dispersion relation:

$$\mathbb{P}^{-1}(s) = m_{pot}^2 - s + \sum_n \frac{s - s_0}{\pi} \int_{s_{th,n}}^\infty \mathrm{d}z \frac{\mathrm{Im}\Pi_n(z)}{(z - s_0)(z - s)},$$

- ► Wave function: SHO
- ▶ We discussed the *D*, *D_s* (PRD84,(2011)034023), and *c̄c* spectra (EPJA,50(2013),125 ZYZ, ZX).

Nonrelativistic Friedrichs Model

UNDERSTANDING THE DYNAMICAL POLE: FRIEDRICHS MODEL[Commun. Pure Appl. Math., 1(1948), 361, Friedrichs]

$$H = H_0 + V$$

 \blacktriangleright One bare state $|1\rangle$ and a continuum state $|\omega\rangle$: free Hamiltonian

$$H_{0} = \omega_{0} |1\rangle \langle 1| + \int_{0}^{\infty} \omega |\omega\rangle \langle \omega | \mathrm{d}\omega$$

Interaction:

$$V = \lambda \int_0^\infty [f(\omega)|\omega\rangle \langle 1| + f^*(\omega)|1\rangle \langle \omega|] \mathrm{d}\omega$$

This model is exactly solvable.

SOLUTIONS:

Eigenvalue equation:

$$H|\Psi(E)\rangle = (H_0 + V)|\Psi\rangle = E|\Psi(E)\rangle.$$

• Continuum: Eigenvalue E > 0, real Solution: define

$$\eta^{\pm}(E) = E - \omega_0 - \lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{E - \omega \pm i\epsilon} d\omega$$

$$|\Psi_{\pm}(E)\rangle = |E\rangle + \lambda \frac{f^{*}(E)}{\eta^{\pm}(E)} \Big[|1\rangle + \lambda \int_{0}^{\infty} \frac{f(\omega)}{E - \omega \pm i\epsilon} |\omega\rangle d\omega \Big]$$

S-matrix:

$$S(E, E') = \delta(E - E') \left(1 - 2\pi i \frac{\lambda f(E) f^*(E)}{\eta^+(E)} \right).$$

Discrete states: The zero point of η(E) corresponds to eigenvalues of the full Hamiltonian — discrete states.

DISCRETE STATE SOLUTIONS: BOUND STATES

$$\eta^{I}(E) = E - \omega_{0} - \lambda^{2} \int_{0}^{\infty} \frac{f(\omega)f^{*}(\omega)}{E - \omega} d\omega = 0$$
$$\eta^{II}(E) = \eta^{I}(z) - 2i\pi G(z), \quad G \equiv \lambda^{2} f(E)f^{*}(E)$$

Bound states: solutions on the first sheet real axis below the threshold.

$$|z_B\rangle = N_B \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{z_B - \omega} |\omega\rangle \mathrm{d}\omega\Big)$$

where $N_B = (\eta'(z_B))^{-1/2} = (1 + \lambda^2 \int d\omega \frac{|f(\omega)|^2}{(z_B - \omega)^2})^{-1/2}$, such that $\langle z_B | z_B \rangle = 1$.

- Elementariness: $Z = N_B^2$; Compositeness: $X = N_B^2 \lambda^2 \int d\omega \frac{|f(\omega)|^2}{(z_B - \omega)^2}$.
- ▶ Eg. If $\omega_0 < 0$, there could be a bound state. In the weak coupling limit, it $\rightarrow |1\rangle$,
- Eg. there could also be dynamically generated bound state in the strong coupling.

DISCRETE STATE SOLUTIONS: VIRTUAL STATES

Virtual states: Solutions on the second sheet real axis below the threshold.

$$|z_v^{\pm}\rangle = N_v^{\pm} \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{[z_v - \omega]_{\pm}} |\omega\rangle \mathrm{d}\omega\Big), \quad \langle \tilde{z}_v^{\pm}| = \langle z_v^{\mp}|,$$

where

$$\begin{split} N_v^- &= N_v^{+*} = (\eta'^+(z_v))^{-1/2} = (1 + \lambda^2 \int d\omega \frac{|f(\omega)|^2}{[(z_v - \omega)_+]^2})^{-1/2},\\ \text{such that } \langle \tilde{z}_v^{\pm} | z_v^{\pm} \rangle = 1. \end{split}$$

• When $\omega_0 < 0$, a bound state generated from $|1\rangle$ is always accompanied with a virtual state in weak coupling.

DISCRETE STATE SOLUTIONS: VIRTUAL STATES PRD94(2016),076006, ZYZ&ZX

Dynamical virtual state comes from the singularity of the form factor, analytically continued G(ω) = |f(ω)|²:

$$\eta^{I} = z - \omega_{0} - \lambda^{2} \int_{0}^{\infty} \frac{|f(\omega)|^{2}}{z - \omega} d\omega$$
$$\eta^{II}(\omega) = \eta^{I}(\omega) + 2\pi i \lambda^{2} G^{II}(\omega) = \eta^{I}(\omega) - 2\lambda^{2} \pi i G(\omega),$$

• Virtual state generated from the bare states: $\omega_0 < 0$

DISCRETE STATE SOLUTIONS: RESONANCE

▶ Resonant states: $\omega_0 >$ threshold, the discrete state becomes a pair of solutions z_R , z_R^* , on the second sheet of the complex plane. $\hat{H}|z_R\rangle = z_R|z_R\rangle$

$$|z_R\rangle = N_R \Big(|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[z_R - \omega]_+} |\omega\rangle\Big),$$
$$|z_R^*\rangle = N_R^* \Big(|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[z_R^* - \omega]_-} |\omega\rangle\Big),$$

GENERALIZATION: JMP.58(2017), 062110; JMP58(2017), 072102; ZYZ&ZX

To use this model in the real world

- Include more discrete states and more continua: coupled channel interaction.
- Partial wave decomposition: The angular momentum space states can be expressed in the Friedrichs model.
- Include interaction among continuum: in general not solvable.

$$\begin{split} H &= \sum_{i=1}^{D} M_{i} |i\rangle \langle i| + \sum_{i=1}^{C} \int_{M_{i,th}}^{\infty} d\omega_{i} \omega_{i} |\omega_{i}; i\rangle \langle \omega_{i}; i| \\ &+ \sum_{i_{2},i_{1}} \int_{M_{i_{1},th}} d\omega' \int_{M_{i_{2},th}} d\omega f_{i_{2},i_{1}}(\omega',\omega) |\omega'; i_{2}\rangle \langle \omega; i_{1}| \\ &+ \sum_{i=1}^{D} \sum_{j=1}^{C} \int_{M_{j,th}} d\omega g_{i,j}(\omega) |i\rangle \langle \omega; j| + h.c. \end{split}$$

Application: X(3872), prd96(2017),054031; zyz& zx

Application:

- Using the GI's bare mass and wave function as input.
- Using the QPC model to provide the form factor.
- We can calculate the η function and solve $\eta(z)=0$
- Coupling bare $\chi_{c1}(2P)$ (3953MeV) with DD^* , D^*D^* .
- ► X(3872) & X(3940) may be two-pole structure: X(3872), natrually dynamically generated; $\chi_{c1}(2P)$ seed $\rightarrow 3917 - 45i$ MeV \sim may be related to X(3940).
- ▶ If X(3872) is a bound state: it has a large portion of DD^* .
- This information helps us in understanding its decay. PRD100(2019),094025; PRD97(2018), 034011, ZYZ&ZX
- Also application in BB* system: the X(3872) counterpart PRD99 (2019),034005; ZYZ& ZX

PROBLEMS

Nonrelativistic Friedrichs model: the dispersion integrel is in E not in s as in the relativistic dispersion relation.

$$\eta^{+}(E) = E - \omega_0 - \lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{E - \omega + i\epsilon} d\omega$$

Possible solution:

introducing the creation & annilation operators.

The QPC model is non-relativistic: can not discribe the interaction between low lying mesons with light quarks.

Possible solution: the relativistic kinetics and Lorentz boosts

Relativistic Generalization: Friedrichs & QPC

Relativistic free two particle states:

JMP4(1963),490, Macfarlane; Nuo.Cim,34,1289,McKerrell

We need the state in the angular momentum representation.

- ▶ In c.m. frame, choose $w^2 = (q_1 + q_2)^2$, boost the two particle system to have total 3-momentum \vec{p} , $E = (\vec{p}^2 + w^2)^{1/2}$.
- lin c.m. frame, choose a z direction, we can define orbital angular momentum l and total spin s, and total angular momentum j, m. Then, we boost it to have 3-momantum \vec{p} .

$$\vec{p}m[wj]ls\rangle = \left(\frac{w}{2q_1^0 q_2^0}\right)^{1/2} \left(\frac{2l+1}{4\pi}\right)^{1/2} \sum_{l_z s_z} C(lsjl_z s_z m)$$

$$\times \int d\varphi \sin\theta d\theta D_{l_z 0}^{l*}(\varphi, \theta, 0) \sum_{\mu_1 \mu_2} \sum_{\nu_1, \nu_2} C(s_1 s_2 s \nu_1 \nu_2 s_z) D_{\mu_1 \nu_1}^{s_1}(\bar{R}(p_1, \ell(p)))$$

$$\times D_{\mu_2 \nu_2}^{s_2}(\bar{R}(p_2, \ell(p))) |p_1 \mu_1 p_2 \mu_2\rangle$$

We treat the two particle states together, using an annihilation and creation operator: B[†]_{pm[wj]ls}|0⟩ = |pm[wj]ls⟩

$$\begin{split} [B_{\vec{p}'m'[w'j']l's'}, B_{\vec{p}m[wj]ls}^{\dagger}] = &\delta^{(3)}(\vec{p} - \vec{p}') \frac{\delta(q - q')}{q^2} \delta_{mm'} \delta_{ss'} \delta_{ll'} \delta_{jj'} \\ = &\beta^{-1} \delta^{(3)}(\vec{p} - \vec{p}') \delta(E - E') \delta_{mm'} \delta_{ss'} \delta_{ll'} \delta_{jj'}, \quad \beta(E) = \frac{q q_1^0 q_2^0 E}{w^2} \end{split}$$

Relativisitc Friedrichs-Lee model

JMP39(1998),2995,Antoniou; Arxiv:2008.02684,ZYZ&ZX

Hamiltonian:

ω

$$\begin{split} P_0 &= \int d^3 \mathbf{k} \beta(E) dE \, E \, B^{\dagger}(E, \mathbf{k}) B(E, \mathbf{k}) + \int d^3 \mathbf{k} \, \omega(\mathbf{k}) \, a^{\dagger}(\mathbf{k}) a(\mathbf{k}) \\ &+ \int d^3 \mathbf{k} \, \beta(E) dE \, \alpha_0(E, \mathbf{k}) \left(a(\mathbf{k}) + a^{\dagger}(-\mathbf{k}) \right) \left(B^{\dagger}(E, \mathbf{k}) + B(E, -\mathbf{k}) \right) \\ P(\mathbf{k}) &= \sqrt{m^2 + \mathbf{k}^2}, \quad \alpha(E, \mathbf{k}) = \alpha^*(E, -\mathbf{k}) \end{split}$$

 $\alpha :$ interaction form factor between the discret state and the continuum.

Eigenvalue problem: find b^{\dagger} s.t.

$$[H, b^{\dagger}(E)] = Eb^{\dagger}(E)$$

Relativisitc Friedrichs-Lee model

Solution:

• Continuum: $E > E_{th}$

$$\begin{split} b_{in}^{\dagger}(E,\mathbf{p}) = & B^{\dagger}(E,\mathbf{p}) - \frac{2\omega(\mathbf{p})\alpha(k(E,\mathbf{p}))}{\eta_{+}(E,\mathbf{p})} \bigg[\int_{M_{th}} dE' \beta(E')\alpha(k(E',\mathbf{p})) \Big[\frac{B^{\dagger}(E',\mathbf{p})}{(E'-E-i0)} \\ & - \frac{B(E',-\mathbf{p})}{(E'+E+i0)} \bigg] - \frac{1}{2\omega(\mathbf{p})} \Big((\omega(\mathbf{p})+E)a^{\dagger}(\mathbf{p}) - (\omega(\mathbf{p})-E)a(-\mathbf{p}) \Big) \bigg] \,, \\ \eta_{\pm}(s) = & s - \omega_{0}^{2} - \int_{s_{th}} ds' \frac{\rho(s')}{s-s'\pm i0}, \quad \rho = 2\omega_{0} \frac{k\varepsilon_{1}\varepsilon_{2}}{W} |\alpha(k)|^{2} \end{split}$$

$$S(E, \mathbf{p}; E', \mathbf{p}') = \delta^{(3)}(\mathbf{p} - \mathbf{p}')\delta(E - E')\left(1 - 2\pi i \frac{\rho(s)}{\eta_+(s)}\right).$$

• Discrete state: at the solution of $\eta(z) = 0$

$$\begin{split} b^{\dagger}(E_{0},\mathbf{p}) = & N \bigg[\frac{(\omega(\mathbf{p}) + E_{0})}{\sqrt{2\omega(\mathbf{p})}} a^{\dagger}(\mathbf{p}) - \frac{(\omega(\mathbf{p}) - E_{0})}{\sqrt{2\omega(\mathbf{p})}} a(-\mathbf{p}) \\ & - \sqrt{2\omega(\mathbf{p})} \int_{M_{th}} dE' \beta(E') \bigg[\frac{\alpha(k(E',\mathbf{p}))}{E' - E_{0}} B^{\dagger}(E',\mathbf{p}) - \frac{\alpha(k(E',\mathbf{p}))}{E' + E_{0}} B(E',-\mathbf{p}) \bigg] \bigg], \end{split}$$

For bound state $N = \frac{1}{\sqrt{2E_0}} \Big[1 + 2\omega(\mathbf{p}) \int_{M_{th}} dE' \beta(E') \frac{2E' |\alpha(k(E',\mathbf{p}))|^2}{(E' + E_0)^2 (E' - E_0)^2} \Big]^{-1/2}$

Relativisite QPC

PRC86(2012),055205,Fuda; Arxiv:2008.02684,ZYZ&ZX

• A $q\bar{q}$ bound state can be expressed using a Mock state:

$$\begin{split} &|A(\tilde{W},^{2s_{A}+1}l_{Aj_{A}m_{j_{A}}})(\mathbf{p})\rangle = \sum_{m_{l}m_{s}}\sum_{\substack{m_{1}m_{2}\\m_{1}'m_{2}'}} \int d^{3}\mathbf{k}\psi_{l_{A}m_{l_{A}}}^{A}(\mathbf{k})|\mathbf{p}_{1},s_{1}m_{1}'\rangle\otimes|\mathbf{p}_{2},s_{2}m_{2}'\rangle\phi_{A}^{12}\omega_{A}^{12} \\ &\times D_{m_{1}'m_{1}}^{s_{1}}[r_{c}(l_{c}(p),k_{1})]D_{m_{2}'m_{2}}^{s_{2}}[r_{c}(l_{c}(p),k_{2})]\langle s_{1}s_{2}m_{1}m_{2}|s_{A}m_{s_{A}}\rangle\langle l_{A}s_{A}m_{l_{A}}m_{s_{A}}|j_{A}m_{j_{A}}\rangle \\ &\times \Big(\frac{\varepsilon_{1}(\mathbf{p}_{1})}{\varepsilon_{1}(\mathbf{k})}\frac{\varepsilon_{2}(\mathbf{p}_{2})}{\varepsilon_{2}(-\mathbf{k})}\frac{W_{12}(\mathbf{k})}{E_{12}(\mathbf{p},\mathbf{k})}\Big)^{1/2}. \end{split}$$

• Quark pair creation: $H_I = \gamma \int d^3x \bar{\psi}(x) \psi(x), \quad t = 0,$

$$\begin{split} T &= -\sqrt{8\pi}\gamma \int \frac{d^3\mathbf{p}_3 d^3\mathbf{p}_4}{\sqrt{\varepsilon_3(\mathbf{p}_3)\varepsilon_4(\mathbf{p}_4)}} \delta^{(3)}(\mathbf{p}_3 + \mathbf{p}_4) \sum_m \sum_{m_3m_4} \langle 1, m, 1, -m | 0, 0 \rangle \\ &\times \mathcal{Y}_1^m(\frac{\mathbf{p}_3 - \mathbf{p}_4}{2}) \langle 1/2, m_3, 1/2, m_4 | 1, -m \rangle \phi_0^{34} \omega_0^{34} b_{m_3}^{\dagger}(\mathbf{p}_3) d_{m_4}^{\dagger}(\mathbf{p}_4), \end{split}$$

From the matrix element $\langle BC|T|A\rangle$, we obtain form factor α for the Friedrichs model.

Relativistic Friedrichs-QPC scheme

▶ Relativistic Friedrichs model: Inverse resolvent, $\eta(z)$

$$\eta(s) = s - \omega_0^2 - \int_{s_{th}} ds' \frac{\rho(s')}{s - s'}, \quad \rho = 2\omega_0 \frac{k\varepsilon_1 \varepsilon_2}{W} |\alpha(k)|^2$$

Solve $\eta(z)=0,$ find poles of S-matrix: resonance, bound state, virtual state.

- Relativized quark model: GI, bare mass(a little tuned), wave function
- Relativistic QPC: only one parameter γ
- Spectrum: Broader range, inluding the light meson, and heavy meson together.

Two-pole structures

Two pole structures

When $\gamma=4.3~{\rm GeV},$ Single channel approximation: general appearance of two-pole structures

"discrete"	"continuum"	GI mass	Input	poles	experiment states	PDG values [15]
$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}(1^3P_0)$	$(\pi \pi)_{I=0}$	1.09	1.3	$\sqrt{s_{r1}} = 1.34 - 0.29i$	$f_0(1370)$	$1.35^{\pm 0.15} - 0.2^{\pm 0.05}i$
				$\sqrt{s_{r2}} = 0.39 - 0.26i$	$f_0(500)$	$0.475^{\pm 0.075} - 0.275^{\pm 0.075}i$
$u\bar{s}(1^3P_0)$	$(\pi K)_{I=\frac{1}{2}}$	1.23	1.42	$\sqrt{s_{r1}} = 1.41 - 0.17i$	$K_0^*(1430)$	$1.425^{\pm 0.05} - 0.135^{\pm 0.04}i$
	2			$\sqrt{s_{r2}} = 0.66 - 0.34i$	$K_0^*(700)$	$0.68^{\pm 0.05} - 0.30^{\pm 0.04} i$
$s\bar{s}(1^3P_0)$	$K\bar{K}$	1.35	1.68	$\sqrt{s_{r1}} = 1.71 - 0.16i$	$f_0(1710)$	$1.704^{\pm 0.012} - 0.062^{\pm 0.009}i$
				$\sqrt{s_b} = 0.98, \sqrt{s_v} = 0.19$	$f_0(980)$	$0.99^{\pm 0.02} - 0.028^{\pm 0.023}i$
$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}(1^3P_0)$	$\pi\eta$	1.09	1.3	$\sqrt{s_{r1}} = 1.26 - 0.14i$	$a_0(1450)$	$1.474^{\pm 0.019} - 0.133^{\pm 0.007}i$
• -				$\sqrt{s_{r2}} = 0.70 - 0.42i$	$a_0(980)$	$0.98^{\pm 0.02} - 0.038^{\pm 0.012}i$
$c\bar{u}(1^{3}P_{0})$	$D\pi$	2.4	2.4	$\sqrt{s_{r1}} = 2.58 - 0.24i$	$D_0^*(2300)$	$2.30^{\pm 0.019} - 0.137^{\pm 0.02}i$
				$\sqrt{s_{r2}} = 2.08 - 0.10i$		
$c\bar{s}(1^3P_0)$	DK	2.48	2.48	$\sqrt{s_{r1}} = 2.80 - 0.23i$		
				$\sqrt{s_b} = 2.24, \sqrt{s_v} = 1.8$	$D_{s0}^{*}(2317)$	$2.317^{\pm 0.0005} - 0.0038^{\pm 0.0038}i$
$b\bar{u}(1^3P_0)$	$\bar{B}\pi$	5.76	5.76	$\sqrt{s_{r1}} = 6.01 - 0.21i$		
-				$\sqrt{s_{r2}} = 5.56 - 0.07i$		
$b\bar{s}(1^3P_0)$	$\bar{B}K$	5.83	5.83	$\sqrt{s_{r1}} = 6.23 - 0.17i$		
				$\sqrt{s_b} = 5.66, \sqrt{s_v} = 5.3$		
$c\bar{c}(2^3P_1)$	$D\bar{D}^*$	3.95	3.95	$\sqrt{s_{r1}} = 4.01 - 0.049i$	X(3940)	
				$\sqrt{s_b} = 3.785$	X(3872)	$3.87169^{\pm 0.00017}$

TWO-POLE STRUCTURES

Two pole structure, a general phenomenon: when the coupling γ is turned on

- Coupling a seed qq̄ state with the nearest open flavor state in S-wave — another new dynamical state ("dynamical pole").
- The seed will move into the second sheet a pair of resonance poles ("bare pole").
- The dynamical pole come from far away on the second sheet towards the real axis: Resonance or virtual state or /and bound state poles.

Two pole structures: light scalars, phase shift sum rule

Seeds
$$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}$$
, $u\bar{s}$, $s\bar{s}$, $\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$

- ► $f_0(500)/\sigma$, $f_0(1370)$; $K_0^*(700)/\kappa$, $K_0^*(1430)$; $f_0(980)$, $f_0(1710)$; $a_0(980)$, $a_0(1450)$ are two pole structures.
- Phase: one single channel approximation is good, two poles contribute a 180° phase shift.

$c\bar{u}$ SEED, $b\bar{u}$ SEED

• $c\bar{u}$ seed couples to $D\pi$: $D_0^*(2300)$, two broad poles

$$\gamma = 4.3:$$
 $\sqrt{s_1} = 2.08 - i0.10;$ $\sqrt{s_2} = 2.58 - i0.24$
 $\gamma = 3:$ $\sqrt{s_1} = 2.21 - i0.28;$ $\sqrt{s_2} = 2.39 - i0.18$

Two-poles From Unitarized χPT: D^{*}₀(2300), two poles PLB582(2004),39,EEK et.al; PLB641(2006),278, FK.Guo, et. al.; PLB,767(2017),465, MA,et.al.:

$$\sqrt{s_1} = 2.105 - i0.102; \quad \sqrt{s_2} = 2.451 - i0.134$$

PRD92(2015),094008,ZH.Guo et.al.:

$$\sqrt{s_1} = 2.114 - i0.111; \quad \sqrt{s_2} = 2.473 - i0.140$$

▶ $b\bar{u}$ couples to $\bar{B}\pi$:

$$\begin{split} \gamma &= 4.3: \sqrt{s_1} = 5.556 - i0.07; \quad \sqrt{s_2} = 6.01 - i0.21 \\ \gamma &= 3.0: \quad \sqrt{s_1} = 5.62 - i0.13; \quad \sqrt{s_2} = 5.85 - i0.26 \\ \text{Unitarized } \chi \text{PT:} \end{split}$$

$$\sqrt{s_1} = 5.537 - i0.116; \quad \sqrt{s_2} = 5.840 - i0.025$$

$c\overline{s}, b\overline{s}$ SEEDS

• $c\bar{s}$ couples to DK: $D^*_{s0}(2317)$, dynamically generated;

$$\begin{split} \gamma &= 4.3: \sqrt{s_b} = 2.24, \quad \sqrt{s_v} = 1.8, \quad \sqrt{s_{r1}} = 2.80 - 0.23i \\ \gamma &= 3.0: \sqrt{s_b} = 2.32, \quad \sqrt{s_v} = 1.9, \quad \sqrt{s_{r1}} = 2.68 - 0.26i \\ b\bar{s} \text{ couples to } \bar{B}K: \end{split}$$

$$\gamma = 4.3: \quad \sqrt{s_b} = 5.66, \quad \sqrt{s_v} = 5.3, \quad \sqrt{s_{r1}} = 6.23 - 0.17i$$
$$\gamma = 3.0: \quad \sqrt{s_b} = 5.72, \quad \sqrt{s_v} = 5.4, \quad \sqrt{s_{r1}} = 6.11 - 0.22i$$

• $c\bar{c}(2^{3}P_{1})$ couples to $D\bar{D}^{*}$: X(3872) dynamically generated $\gamma = 4.3$: $\sqrt{s_{b}} = 3.785$, $\sqrt{s_{r1}} = 4.01 - 0.049i$ $\gamma = 3.0$: $\sqrt{s_{b}} = 3.84$, $\sqrt{s_{r}} = 3.99 - 0.045i$

GENERAL FEATURES OF THE TWO POLE STRUCTURE:

Coupling of a seed with a continuum: dynamically generate a new state

- Nontrivial form factor: Scattering of mesons, composite of qq̄. Non-local interaction.
- The dynamically generated state may come from far away from the seed: in general from the singularity of the form factor
- If single channel approximation is applicable, the two poles together may roughly contribute a phase shift of 180°.
- Whether the dynamical state is a bound state, virtual state or resonance depend on the specific wave function of the particles in the interation.
- Conjecture: for S-wave coupling of qq with the nearest open-flavor continuum, the two-pole structure may be near the physical region and it is highly possible to have observable effect in the experiments.

Conclusion & Outlook

- Coupling a seed with the continuum when all particles are composite may in general generate a dynamically new state.
- We combine the relativistic Friedrichs model and the relativistic QPC model : this scheme can be applied to both light mesons and heavy mesons.
- ▶ $f_0(500)/f_0(1370)$, $f_0(980)/f_0(1710)$, $K_0^*(700)/K_0^*(1430)$, $a_0(980)/a_0(1450)$, X(3872)/X(3940), all result from the two-pole mechanism.
- ▶ Prediction: $D_0^*(2210)/D_0^*(2390)$, $D_{s0}^*(2317)/D_{s0}^*(2680)$, $B_0^*(5620)/B_0^*(5850)$, $B_{s0}^*(5720)/B_{s0}^*(6110)$. $B_{s0}^*(5720)$ should be very narrow.
- There could be other two-pole structures to be discovered.
- Coupled channel generalization.
- This mechanism may be much more general beyond hadron physics.

Thanks !

Appendix

S-MATRIX UNITARITY

► S-Matrix:
$$S_{\beta\alpha} = \langle \beta_{out} | \alpha_{in} \rangle$$

► Unitarity: $SS^{\dagger} = 1$, $S = 1 + iT$
 $1 = (1 - iT^{\dagger})(1 + iT) = 1 + iT - iT^{\dagger} + T^{\dagger}T \Rightarrow -i(T - T^{\dagger}) = T^{\dagger}T$

$$\langle \{\vec{q}_i\} | T | \vec{k}_1 \vec{k}_2 \rangle = (2\pi)^4 \delta^{(4)} (k_1 + k_2 - \sum q_i) \mathcal{M}(k_1, k_2 \to \{q_i\})$$

Unitarity: forward scattering

$$2 \mathrm{Im} \mathcal{M}(a
ightarrow a) = \sum_{f} \int d \Pi_{f} \mathcal{M}^{*}(a
ightarrow f) \mathcal{M}(a
ightarrow f)$$

Optical theorem:

$$\operatorname{Im}\mathcal{M}(k_1, k_2 \to k_1, k_2) = 2E_{cm}p_{cm}\sigma_{\mathrm{tot}}$$

PARTIAL WAVE AMPLITUDE AND UNITARITY

▶ Partial wave decomposition for spinless particles amplitude: $2 \rightarrow 2$ amplitude

$$A_l(s) = \frac{1}{32\pi} \int_{-1}^{1} d\cos\theta P_l(\cos\theta) A(s, t(s, \cos\theta))$$
$$A(s, t, u) = 16\pi \sum_l (2l+1) P_l(\cos\theta) A_l(s)$$

- ▶ Partial wave S-matrix: $S_l = 1 + 2i\rho(s)A_l$, $S_l(s)S_l^*(s) = 1$, $\rho(s) = 2k/E$.
- Partial-wave Unitarity:

$$\operatorname{Im} A(s) = \frac{1}{2i} (A(s + i\epsilon) - A(s - i\epsilon)) = \rho(s) |A(s)|^2$$

• Coupled channel: $S_{ij} = \delta_{ij} + 2i\sqrt{\rho_i}A_{ij}\sqrt{\rho_j}$

$${
m Im} A_{ij} = \sum_k A_{ik}
ho_k(s) A^*_{kj}, \quad {
m for \ on-shell \ internal \ } k \ {
m states}$$

Pole, zero of S-matrix and states

The partial wave S-matrix can be analytically continued to the complex *s*-plane:

- Unitary cut: $s > s_{th,j}$
- Single channle: $S^I = \frac{1}{S^{II}(s)}$
- First sheet zero \leftrightarrow second sheet pole \rightarrow virtual state, or resonance $s = (M i\Gamma/2)^2$.
- First sheet pole: on the real axis below threshold, bound state.
- Coupled channel: Riemann sheets doubled

DISPERSION RELATION

The amplitude A(s) is a real analytic function after analytic continuation:

- ▶ Real analytic function: $A(z^*) = A^*(z)$
- ▶ Unitarity: $Im A(s) \neq 0$, for $s > z_R \Rightarrow$ right hand cut

Cauchy theorem: if A(s) converges at infinity, no poles on the first sheet

$$A(z) = \frac{1}{2\pi i} \int_{C} dz' \frac{A(z')}{z' - z}$$

= $\frac{1}{\pi} \int_{z_{R}} dz' \frac{\text{Im } A(z')}{z' - z}$

This is called dispersion relation.

Once subtracted dispersion relation:

$$A(z) = A(z_0) + \frac{z - z_0}{\pi} \int_{Z_R}^{\infty} dz' \frac{\operatorname{Im} A(z')}{(z' - z_0)(z' - z)}$$

Re z