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QCD predicted states
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l Exotic hadrons: states composed of quarks and gluons beyond
conventional mesons (𝑞4𝑞) and baryons (𝑞𝑞𝑞).

l Provide new insights into internal structure and dynamics of
hadrons.

l Unique probe to non-perturbative behavior of QCD.

Different compositions and binding
schemes:
l Hybrid : Nquarks = 2 + excited gluon
l Glueball: Nquarks = 0 (gg, ggg, …)
l Molecular state: bound state of more 

than 2 hadrons
l Compact multiquark state: Nquarks > 3 



Exotic hadrons in heavy-heavy systems 𝒄4𝒄 or 𝒃7𝒃

l Theoretical models are well-established for conventional states: QCD potential
modes are well constructed.

l Experimentally easier to measure: relative narrow compared with light hadron
systems.

l Quarkonium-like exotic states is an ideal place for exotic search.
3



Exotic quarkonium-like spectroscopy
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The BESIII Detector
Magnet:  1T   Super conducting

MDC:  small cell & He gas
sxy=130 µm

sp/p = 0.5% @1GeV
dE/dx=6% 

TOF:
sT =  60 ps Barrel

70 ps Endcap

Muon ID: 8~9 layer RPC
sRΦ=1.4 cm~1.7 cm

EMCAL:   CsI crystal
DE/E  = 2.5% @1 GeV
sφ,z = 0.5~0.7 cm/ÖE Trigger: Tracks & Showers

Pipelined; Latency = 6.4 µs

Data Acquisition:
Event rate = 3 kHz

Throughput ~ 50 MB/s

The new BESIII detector is hermetic for neutral and charged particle 
with excellent resolution, PID, and large coverage. 

NIM A614, 345 (2010) 
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Zc(3885)+ Zc(3885)0

Zc(3900)+ Zc(3900)0

Zc(4025)+ Zc(4025)0

Zc(4020)+ Zc(4020)0

𝒆*𝒆( → 𝝅𝟎(𝑫∗7𝑫∗)𝟎𝒆*𝒆( → 𝝅𝟎(𝑫∗7𝑫)𝟎

PRL 110, 252001 (2013) 

PRL115, 222002 (2015) PRL115, 182002 (2015)PRL 112, 132001 (2014)ST: PRL 112, 022001(2014)
DT: PRD92, 092006 (2015)

PRL 111, 242001(2013) PRL113,212002 (2014)

p What is the nature of these states? 
p Different decay channels of the same observed states?  Other decay modes? JP?
p Searches for 𝑍"# partners were proposed few years ago. e.g., 𝑍"#/𝑍"#B → 𝐾𝐽/𝜓, 𝐷#𝐷∗, 𝐷#∗𝐷,

𝐷#∗𝐷∗ etc. => decay rate of 𝑍"# to open-charm final states is supposed to be larger than
hidden-charm.

The Zc Family at BESIII
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PRL 115, 112003 (2015)



Do search in 𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0)
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l BEPCII extend the energy limit to 4.7GeV in 2019-2020.
l We analyze 3.7fb-1 data accumulated at 4.628, 4.641, 4.661, 4.681, 4.698GeV.
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How to identify 𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0)

𝒆*𝒆( → 𝑲*𝑫𝒔(𝑫∗𝟎

𝑍"#(

𝑫∗𝟎

𝑫𝒔(

𝑲*

𝒆*𝒆( → 𝑲*𝑫𝒔∗(𝑫𝟎

𝑫𝒔(

𝑍"#(

𝑫𝟎

𝑫𝒔∗(

𝑲*

𝝅𝟎(𝜸)

l Partial reconstruction of the process 𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0)

n Reconstruct a 𝑫𝒔( with two tag modes: 𝐷#( → 𝐾H0𝐾( and 𝐷#( → 𝐾*𝐾(𝜋(.

n Tag a bachelor charged 𝑲*.

n Use signature in the recoil mass spectrum of 𝑲*𝑫𝒔( to identify the process of 

𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0).

n Study the mass spectrum of recoil mass of 𝑲*.

n The charge conjugated channels are also implied.

? ?

Similar technique with the paper
of Zc(4025)+observation.
PRL 112, 132001 (2014)



Tag a 𝑫𝒔( and select 𝑲*(𝑫𝒔(𝑫∗𝟎 + 𝑫𝒔∗(𝑫𝟎) signals
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(1.955,1.980)

(1.955,1.985)

(1.990,2.027)
p 𝑅𝑀(𝐾*𝐷#(): the recoil mass of 𝐾*𝐷#(.
p 𝑀(𝐷#(): the reconstructed mass.
p 𝑚(𝐷#(): the mass taken from PDG.

For 𝐷#( → 𝐾*𝐾(𝜋( process, keep the events only in

1) 𝐷#( → 𝜋(𝜙(𝐾(𝐾*): 𝑀 𝐾(𝐾* < 1.05 GeV/cT.

2) 𝐷#( → 𝐾(𝐾∗(892)(𝐾*𝜋(): 

𝑀(𝐾*𝜋() ∈ 0.85, 0.93 GeV/cT.
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Select candidates for 𝑲*(𝑫𝒔(𝑫∗𝟎 + 𝑫𝒔∗(𝑫𝟎)

n No peaking background observed in WS events; => WS technique is well validated by

MC simulations and data sideband events.

n Both 𝑒*𝑒( → 𝐾*𝐷#(𝐷∗0 and 𝑒*𝑒( → 𝐾*𝐷#∗(𝐷0 can survive with this criterion. 

n Fitting to 𝑅𝑀 𝐾*𝐷#( sideband events give number of WS in signal region: 282.6±12.0;

n This WS number will be fixed in 𝑅𝑀(𝐾*) spectrum fitting.

n Data-driven technique to describe 

combinatorial background.

n Right Sign(RS): combination of 𝐷#( and 𝐾*.

n Wrong Sign(WS): combination of 𝐷#( and 𝐾(

to mimic combinatorial background.

(1.990,2.027)

very	evident	peak



𝑅𝑀 𝐾*𝐷#( distributions at other four energy points
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Recoil-mass spectra of 𝐾* and two-dimensional distributions
of 𝑀(𝐾*𝐷#() vs. 𝑅𝑀(𝐾*)
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n The 𝐾* recoil-mass spectrum in data at 4.681GeV.

n Combinatorial backgrounds are subtracted.

n A structure next to threshold raging from 3.96 to 4.02GeV/c2.

n The enhancement cannot be attributed to the non-resonant (NR)

signal process 𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0).



Check with high excited 𝐷#∗∗ states
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n Most high excited 𝐷#∗∗ states have negative Q value or forbidden due

to Parity Violation.

n 𝐷#b∗ (2536)*(𝐾*𝐷∗0)𝐷#(, 𝐷#T∗ (2573)*(𝐾*𝐷0)𝐷#∗( and

𝐷#b∗ (2700)*(𝐾*𝐷∗0)𝐷#( are studied using control sample.

n Most high excited 𝐷(#)∗∗ states contribute a broad peak around 4 GeV 

which could not describe the enhancement in 𝑅𝑀(𝐾*).

𝐷#∗∗*
𝑫∗𝟎

𝑲*

𝑫𝒔( 𝑫𝒔(

𝑫𝟎

𝑫𝒔∗(

𝑲*

𝝅𝟎(𝜸)

𝐷#∗∗*

𝑫𝒔∗∗* mass(MeV/c2) width(MeV) JP 𝑫𝒔∗∗*(𝐾*𝐷∗0)𝑫𝒔( 𝑫𝒔∗∗*(𝐾*𝐷0)𝑫𝒔∗(

𝐷#b(2536)* 2535.11±0.06 0.92±0.05 1+ (*) Fixed in nominal fitting Parity Violation in decay

𝐷#T∗ (2573)* 2569.1±0.8 16.9±0.7 2+ Not decay to KD* (*) Fixed in nominal fitting

𝐷#b∗ (2700)* 2708.3(f.g*g.0 120±11 1- (*) Fixed in nominal fitting
Q=-139.3MeV

P-wave suppression in
production.

𝐷#b∗ (2860)* 2859±27 159±80 1- (*)less contribution than 𝐷#b∗ (2700)*;
Q=-146MeV.

Q=-290MeV;
P-wave suppression in

production.

𝐷#f∗ (2860)* 2860±7 53±10 3- (*)F-wave suppression;
Q=-147MeV Q=-291MeV



Check with high excited 𝐷#∗∗ states
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l The estimated sizes of excited 𝐷#∗∗ contributions at each energy point.
l “-” means the production is not allowed kinematically.

e*e( → Dib 2536 *(𝐷∗0K*) Di(
e*e( → Dib 2536 *(𝐷∗0K*) Di(

𝑒*𝑒( → 𝐷#T∗ 2573 *(𝐾*𝐷0)𝐷#∗((𝛾𝐷#()
𝑒*𝑒( → 𝐷#T∗ 2573 *(𝐾*𝐷0)𝐷#∗((𝛾𝐷#()

𝑒*𝑒( → 𝐷#b∗ (2700)*𝐷#( → 𝐾*𝐷0𝐷#(.

BaBar_PhysRevD.80.092003(2009)



Check with high excited 7𝑫∗∗𝟎states
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7𝑫∗∗𝟎 mass(MeV/c2) width(MeV) JP 7𝑫∗∗𝟎(𝐾*𝐷#∗()𝑫𝟎 7𝑫∗∗𝟎(𝐾*𝐷#()𝑫∗𝟎

7𝐷b(2430)0 2427±40 384(bb0*bf0 1+ below KDs* threshold;
Q=-72.22MeV

soft Kaon

Parity Violation decay

7𝐷T∗ (2460)0 2460.7±0.4 47.5±1.1 2+ below KDs* threshold;
Q=-39.52MeV

soft Kaon

(*)Test fit

7𝐷(2550)0 2564±20 135±17 0- (*)Test fit Parity Violation in decay
7𝐷l∗ (2600)0 2623±12 139±31 1- (*)Test fit (*)Control sample &

nominal fit
7𝐷∗(2640)0 2637±6 <15 ? (*)Test fit (*)Test fit
7𝐷(2740)0 2737±12 73±28 2- (*)Test fit Parity Violation in decay
7𝐷f∗ (2750)0 2763±3.4 66±5 3- (*)Control sample P-wave suppressed.

Q=-89.8MeV

u 𝐷(2640) is quite narrow and not confirmed by any high statistic experiment including
LHCb.

u Most 7𝐷∗∗0 states are not favored from the check of test fit.=>Systematic uncertainties.

𝑫𝒔(

𝑫∗𝟎

𝑲*7𝑫∗∗𝟎7𝑫∗∗𝟎
𝑫𝒔∗(

𝑲*

𝑫𝟎

𝝅𝟎(𝜸)
𝑫𝒔(



Check with high excited non-strange 7𝐷b∗ 2600 0states
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l The 𝑅𝑀(𝐾*) spectrum is distorted due to
limited production phase space. However, it
is much broader than the observed
enhancement.

l e*e( → 𝐷∗07𝐷b∗ 2600 0(→ 𝐷#(𝐾*) is
studied using an PWA of control sample
e*e( → 𝐷∗07𝐷b∗ 2600 0(→ 𝐷(𝜋*).

l The ratio R= B(7𝐷b∗ 2600 0 → 𝐷#(𝐾*)/
B(7𝐷b∗ 2600 0 → 𝐷(𝜋*) is unknown.

l => difficult to produce absolute size.

l Determine the ratio in nominal simultaneous
fit, providing constraint on its size.



Interference effect of 𝐾*𝐷#∗(𝐷0 final states (1)

17

l Data subtracted with WS backgrounds.
l Any two MC simulated backgrounds with interferences are taken into account.
l The interference angle is tuned to give the largest interference effect around 4.0GeV/c2.



Interference effect of 𝐾*𝐷#∗(𝐷0 final states（2）
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l The component of non-resonant process is also considered under different angular
momentum (LKX, L𝐷#∗(𝐷0) assumption.

l Normalizations are scaled according to the observed yields in control samples.



Interference effect of 𝐾*𝐷#(𝐷∗0 final states (1)
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Interference effect of 𝐾*𝐷#(𝐷∗0 final states (2)
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Interference between any two 𝐷(#)
∗∗ /NR will not produce such a

narrow peak we observed in data.



l Do you clearly see 𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0)events?

l Can the WS shape represent the combinatorial backgrounds?

l Do you see an excess of data over the backgrounds?

l Is the enhancement due to the 𝑒*𝑒( → 𝐾*(𝐷#(𝐷∗0 + 𝐷#∗(𝐷0) non-resonant 
process?

l Is the enhancement due to the 𝐷(#)∗∗ resonant process? 

l Is the enhancement due to interference effect between any 𝐷(#)∗∗ /NR?

l Can we try the assumption of 𝑒*𝑒( → 𝐾*𝑍"#( , 𝑍"#( → 𝐷#(𝐷∗0/𝐷#∗(𝐷0 to 
interpret it? Yes, we could.

Yes

Yes

Yes

NO
NO

What do we learn

NO
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Study of recoil-mass spectra of 𝐾*
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l Assume the structure as a 𝐷#(𝐷∗0/𝐷#∗(𝐷0
resonance, denote it as 𝑍"# 3985 (.

l Simultaneous unbinned maximum likelihood
fit to five energy points.

l 𝑍"# 3985 ( signal shape: S-wave Breit-
Wigner with mass dependent width with
phase-space factor.

l The potential interference effects are neglected.
l The Jr of 𝑍"# 3985 ( is assumed as 1*;

=>(S,S) is the most promising configuration.
l The significance with systematic uncertainties

and look-elsewhere effect considered is 
evaluated to 5.3σ.

l e*e( → 𝐷∗07𝐷b∗ 2600 0(→ 𝐷#(𝐾*) is fitted to
be negligible.

Resonance parameter:
𝑚0 𝑍"# 3985 ( = 3985.2(T.0*T.b(𝑠𝑡𝑎𝑡. ) MeV/cT , 

𝛤0 𝑍"# 3985 ( = 13.8(y.T*z.b(𝑠𝑡𝑎𝑡. )MeV.



Cross-section measurement at each energy point
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l Uncertainty is quite large,

l Any Y states around 4.68GeV?

l Born cross section:

𝜎|}~� 𝑒*𝑒( → 𝐾*𝑍"#( + 𝑐. 𝑐. ⋅ 𝔅 𝑍"#( → 𝐷#(𝐷∗0 + 𝐷#∗(𝐷0

= ����
ℒ���⋅ b*� ⋅���⋅ ���*��� /T

.



Systematics uncertainties
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Resonance parameter: 𝑚0 𝑍"# 3985 ( = 3985.2(T.0*T.b(𝑠𝑡𝑎𝑡. ) ± 1.7(𝑠𝑦𝑠. )MeV/cT, 

𝛤0 𝑍"# 3985 ( = 13.8(y.T*z.b(𝑠𝑡𝑎𝑡. ) ± 4.9(𝑠𝑦𝑠. )MeV.

Pole position: 𝑚�}�� 𝑍"# 3985 ( = 3982.5(T.�*b.z(𝑠𝑡𝑎𝑡. ) ± 2.1(𝑠𝑦𝑠. )MeV/cT , 

𝛤�}�� 𝑍"# 3985 ( = 12.8(g.g*y.f(𝑠𝑡𝑎𝑡. ) ± 3.0(𝑠𝑦𝑠. )MeV.



Discussion on 𝑍"# 3985 (
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n They are observed in a combination of 𝐷#(𝐷∗0 and 𝐷#∗(𝐷0 final states.

n The production is dominated at 𝑠 = 4.681 GeV. Any Y contribution?

n A tetraquark state or a molecule-like? Or threshold kinematic effects ? Or other

scenario?

n Search for other decay modes 𝑍"#0 / 𝑍"#∗( can help to pin down its properties.

n Only a few MeV higher than the threshold 

of 𝐷#(𝐷∗0/𝐷#∗(𝐷0 (3975.2/3977.0)MeV/cT.

n At least four quark state (𝒄4𝒄𝒔7𝒖) and  a

charged hidden-charm state with strangeness.



The Zcs (3985)± and Zc(3900)±

𝑍"# 3985 ± 𝑍𝒄 3900 ± 𝑍𝒄 38850 ±

Mass (MeV/cT) 3985.2(T.0*T.b ± 1.7 3899.0±3.6±4.9 3883.9±1.5±4.2

Width (MeV) 13.8(y.T*z.b ± 4.9 46±10±26 24.8±3.3±11.0

𝜎|}~� ⋅ 𝔅 (pb) 4.4(0.z*0.� ± 1.4 13.5±2.1±4.8 83.5±6.6±22.0

525/pb data	@4.26	GeV1643/pb	data	@4.681	GeV

from Marek Karliner

SU(3) partner of Zc(3900)?
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Interpretation on the nature of 𝑍"# 3985 (

l Various interpretations are possible for the structure
u 1) Tetraquark state
u 2) Molecule
u 3) 𝐷#T∗ (2573)*𝐷#∗( threshold kinematic effects
u (Re-scattering , Reflection, Triangle singularity)
u 4) Mixture of molecular and tetraquark
u 5) …

arXiv:2011.08501
arXiv:2011.08628
arXiv:2011.08656
arXiv:2011.08725
arXiv:2011.08747
arXiv:2011.09156
arXiv:2011.09225
arXiv:2011.09244
arXiv:2011.09404
arXiv:2011.10495
arXiv:2011.10922
arXiv:2011.10959
arXiv:2011.11488
arXiv:2011.12230
arXiv:2011.12326
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Zcs: 3985.2MeV

9.2MeV 10MeV

𝐷#∗(𝐷0 3977.0MeV
𝐷#(𝐷∗0 3975.2MeV
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from Steve Olsen

K/𝜂 exchange?



What next?
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l We are proposing more data taking near 4.681GeV.
l Precise resonant parameters.
l Spin-parity [PWA].
l More decay modes, like 𝐾(∗)(𝐽/𝜓,𝐾(∗)(ℎ", 𝐾(∗)(𝜂" or 𝐾(∗)(𝜒"l.
l Production mechanisms.
l Test various theoretical models.
l Neutral partner of 𝑍"#0 [on going] : 𝐾#0(𝐷#(𝐷∗* + 𝐷#∗*𝐷().
l Other 𝑍"#( states? 𝑍"#∗( states? [on going] : 𝐾*𝐷#∗(𝐷∗0.
l Other 𝑍¢#( states? 𝑍¢#∗( states?
l Search 𝒁𝒄𝒔( state in LHCb and B factories? Important!
l …



Summary
l We	observed	an enhancement near 𝑫𝒔(𝑫∗𝟎/𝑫𝒔∗(𝑫𝟎 mass thresholds in

𝒆*𝒆( → 𝑲*(𝑫𝒔(𝑫∗𝟎 + 𝑫𝒔∗(𝑫𝟎) (c.c.)	at	the	center-of-mass	energy	
4.681GeV	(significance	>	5σ).

l It matches a hypothesis of 𝑫𝒔(𝑫∗𝟎 and 𝑫𝒔∗(𝑫𝟎 resonant structure
𝒁𝒄𝒔 𝟑𝟗𝟖𝟓 ( with a mass-dependent-width Breit-Wigner line shape well;
n an	exotic	state	with	at	least	four-quark	constituent c ̅𝑐s4𝑢

l Pole position is	measured	to	be

l The	Born	cross	section	𝜎|}~� ⋅ 𝔅 at five energy points are	determined.

l It	is	not	a	charmonium and the	nature	is	yet	unknown.

l New	type	of	resonances? more to be measured/understood!

l More	results	will	come	out	…
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𝒎𝒑𝒐𝒍𝒆 𝒁𝒄𝒔 𝟑𝟗𝟖𝟓 ( = 𝟑𝟗𝟖𝟐. 𝟓(𝟐.𝟔*𝟏.𝟖(𝒔𝒕𝒂𝒕. ) ± 𝟐. 𝟏(𝒔𝒚𝒔. )𝐌𝐞𝐕/𝒄𝟐, 

𝜞𝒑𝒐𝒍𝒆 𝒁𝒄𝒔 𝟑𝟗𝟖𝟓 ( = 𝟏𝟐. 𝟖(𝟒.𝟒*𝟓.𝟑(𝒔𝒕𝒂𝒕. ) ± 𝟑. 𝟎(𝒔𝒚𝒔. )𝐌𝐞𝐕.



Thanks!
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Especially to the staff of BEPCII and the 
computing center, the funding agencies, 
and all the friends of BES! 



2011.08656

2011.08725
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𝒛𝒄(𝒔)
(B) and 𝒛𝒃(𝒔)

(B)
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2011.10922



Check with high excited 𝐷(#)∗∗ states
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l Data subtracted with
WS backgrounds.

l 𝑍"# 3985 ( shapes
are normalized to
yields observed in
data.

l 𝐷#∗∗ are scaled to the
size determined by
control sample.

l 7𝐷∗∗0 state shapes are
arbitrary. 

l None of the excited
𝑫(𝒔)∗∗ can explain the
narrow peaking
structure.



Check with high excited non-strange 7𝐷f∗ 2750 0 states
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l Study 𝐷07𝐷f∗ 2750 0 → 𝐷#∗(𝐾* by 𝑒*𝑒( →
𝐷07𝐷f∗ 2750 0(→ 𝐷( 𝜋*) .

l B(7𝐷f∗ 2750 0 → 𝐷#∗(𝐾*)/ B(7𝐷f∗ 2750 0 →
𝐷(𝜋*)=4.1%

Godfrey_PhysRevD.93.034035(2016)

p The estimated sizes of excited 7𝐷f∗(2750) contributions at each energy point is negligible.
p Both decay and production of 𝑒*𝑒( → 𝐷07𝐷f∗ 2750 0 → 𝐷#∗(𝐾* is F-wave.



Fit results based on three subsets of data set at 4.681GeV
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l Two-thirds of the data set at 4.681GeV was kept blinded until
after the analysis strategy was established and validated.

l Overall, three sets of fit results are compatible.
l Structures are stable with respect to different data-taking periods. 
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from Steve Olsen

• We observer the 𝑍"# in both 𝐷#∗𝐷 and 𝐷#𝐷∗ modes, not only in 𝐷#∗𝐷.
• Our control sample of 𝐷#∗𝐷#T(2573) show it size is very small.
• Not in favor of this scenario.


