

Measurement of forward-backward asymmetry (A_{FB}) and effective weak mixing angle at the CEPC

Zhenyu Zhao, **Siqi Yang,** *Minghui Liu, Liang Han Manqi Ruan 29rd, April., 2020*

University of Science and Technology of China IHEP

Z pole physics from LEP to CEPC

LEP in 1990s

- First time that experimental precision is high enough to constrain loop effect from weak interactions
- A_{FB} and weak mixing angle at Z pole: precision ~0.1%
- Known loop corrections to the weak mixing angle: ~4%

CEPC

• In general, CEPC has the capability to improve precision of Z pole physics to 0.01%

Is this important? Yes!

- 0.1% uncertainty is as large as the effect from 2-loop contribution, and one order magnitude larger than the theoretical uncertainty
- EW global fitting is limited by the experimental results

Weak mixing angle

Key parameter in electroweak sector

- Observation on fundamental paramaters
 - α , G μ , M_Z, M_W, sin² θ _W, M_H, M_{top}

$$\sin^2\theta_{\rm eff}^f = \frac{1}{4|Q_f|} \left(1 - \frac{g_V^f}{g_A^f}\right)$$

The relative fraction between vector and axialvector contributions in electrweak interactions

In general, it reflects the overall spatial asymmetry of the entire physics

	experimental precision
Fine structure constant: α	10-9
Fermi constant: G _µ	10-7
Mass of Z boson: Mz	10 -5
Mass of W boson: M _W	10-4
Effective weak mixing angle: sin ² θ _{eff}	10 ⁻³

Weak mixing angle is important. But it has the worst precision among fundamental parameters

Loop corrections

Uncertainties on $sin^2\theta_{eff}$

- By 2006, we can make complete 2-loop calculations, with uncertainty 4 MeV on M_W and 0.00005 on $sin^2\theta_{eff}$
- Experimental uncertainty: 0.00026/0.00029 from SLC/LEP

1-loop diagrams contribute to $\sin^2\theta_{eff}$, shifting its value by 3.7%

2-loop diagrams contribute to $\sin^2\theta_{eff}$, shifting its value by ~0.2%

History of weak mixing ange measurement

What can CEPC do?

Precise determination of A_{FB} and $sin^2\theta_{eff}$

• At least one order magnitude better than LEP/SLC

Additional 1: flavor comparison

 In the future, measurements and comparisons between different flavor channels are important. Combination for average sin²θ_{eff} is no longer meaningful

LEP ee-bb result is 3.2 sigma different from SLC ee-ee result

Actually, LEP ee-qq results are in general larger than the lepton results itself

Flavor-dependence is one of the important things we need to test, and contains possible information of new physics

What can CEPC do?

Additional 2: $sin^2\theta_W$ vs energy scale

- All precision measurement is determined at Z-pole
- We already have some lower energy measurement, but not a single higher energy measurement.

For a long time, people want to have a measurement of $\sin^2\theta_W$ in high mass region, to test the running effect to higher energy scale.

CEPC could be the first one that makes it clear

NOTE: this is MSbar scheme defined weak mixing angle.

Measurement: $sin^2\theta_{eff}$ and AFB

Asymmetry at Z pole

- Forward-Backward Asymmetry (A_{FB})
- A function of invariant mass

NOTE! θ is defined as between the fermions in the initial and final state. So, we need to know the charge of particles in order to judge fermions and anti-fermions

$\cos\theta > 0$, forward $\cos\theta < 0$, backward

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = A_{FB} (\sin^2 \theta_{\text{eff}}^f)$$

Measurement: sin²θ_{eff} and A_{FB}

 A_{FB} has roughly a linear relationship to $sin^2\theta_{eff}$. Right plot is the average A_{FB} at Z pole, as a function of $sin^2\theta_{eff}$ for e+e- \rightarrow Z \rightarrow uubar events, for example.

This relationship, or sensitivity of AFB to $sin^2\theta_{eff}$, depends on collision energy and particle flavors

sensitiviy =
$$\frac{\Delta \sin^2 \theta_{\text{eff}}^{\ell}}{\Delta A_{FB}}$$

Uncertainties

Statistical uncertainty

- Counting forward (N_F) and backward (N_B) events
- Branching ratio, acceptance and efficiency affect the final sample size

Systematic uncertainties

- Negligible effect from direction, energy, momentum and efficiency determination
- Only one thing: charge mis-identification

$$A_{FB}^{\rm obs} = \frac{1 - 2f}{(1 - f)^2 + f^2} A_{FB}^{\rm true}$$

Note: efficiency simply affects the data sample size. It doesn't change the value of AFB, thus no uncertainty extrapolation.

Charge mis-ID changes the AFB values. So it not only affects the sensitivity, but also extrapolate as a systematic uncertainty.

Statistical uncertainties

Previous results from LEP, SLC and Tevatron

- All previous results are statistical uncertainty dominant
- For LEP/SLC: 0.00026/0.00029 completely from statistics

Estimation for CEPC

- 3 x 10¹¹ single Z boson events including all final states at Z pole in 2 years
- Different final states:
 - branching ratio makes statistics different
 - acceptance and efficiency (for quark final states) makes statistics different
 - different sensitivity
- Different collision energy:
 - luminosity changes (~ΔL³)
 - sensitivity changes

$$\Delta \sin^2 \theta_{\text{eff}}(\text{stat.}) = \sqrt{\frac{1 - (A_{FB}^{\text{obs}})^2}{N \cdot \epsilon}} \cdot \sqrt{\frac{1 - 2f + 2f^2}{(1 - 2f)^2}} \cdot \text{sensitivity}$$

Lepton cases (ee + $\mu\mu$ + $\tau\tau$)

Consider 1 month data taken at a given energy point:

- acceptance set to 100%
- efficiency set to 100%
- charge mis-ID set to 0

Collision Energy	70 GeV	75 GeV	91.18 GeV	115 GeV	130 GeV	155 GeV
sin²θ _{eff} in prediction	0.23140	0.23136	0.23123	0.23128	0.23136	0.23152
statistical uncertainty	0.00042	0.00019	0.00001	0.00328	0.00636	0.00796

- Lepton channels can provide very precise measurement at Z pole
- However it cannot measure the running $sin^2\theta_W$

b quark cases

Consider 1 month data taken at a given energy point:

- No study yet, estimation based on LEP performance (we should be better)
- efficiency set to 20% (select those b quarks that we can measure charge)
 - 5%: leptonic decay, charge mis-ID 5%
 - 15%: those with good jet charge tagging, charge mis-ID 10%

Collision Energy	70 GeV	75 GeV	91.18 GeV	115 GeV	130 GeV	155 GeV
sin²θ _{eff} in prediction	0.23159	0.23149	0.23123	0.23097	0.23084	0.23058
statistical uncertainty	0.00012	0.00009	<0.00001	0.00009	0.00016	0.00032

- b quark channel can provide not only precise measurement at Z pole, but also a running $sin^2\theta_W$

What we further need

Efficiency (tagging) and charge mis-ID

• for tau, b quark, c quark, and light quark (u and d)

In principle

- We don't go for a high efficiency (since we anyway have a large data sample)
- We need a low charge mis-ID
- So, if needed, we can determine a tagging algorithm with relatively low efficiency, but high purity and charge accuracy
- We also need an uncertainty on the charge mis-ID probability

Summary

A first estimation on CEPC asymmetry measurement

- Total uncertainty of sin²θ_{eff} can easily be at 0.00001 level, for each single final state (except light quar finals)
- Which means an accurate flavor comparison is possible
- Energy-running sin²θ_W measurement can be achieved at heavy quark channels (uncertainty / running effect ~ 1/3 or 1/4)
- Better give more time running on off Z pole point

To finish further works

- Efficiency (particle tagging) and charge mis-ID estimation are needed
 - We now estimate using LEP's performance. We should be better
- Further calculation from $sin^2\theta_{eff}$ to MSbar $sin^2\theta_W$, for energy-running measurement