LumiCal Design Status

RING CENTER

2020.05.29 https://indico.ihep.ac.cn/event/11801/

Outline

• Physics basic, BHLUMI :

estimating Bhabha cross section for geom acceptance beam crossing boost effect

→ Pushing for θ_{min} < 30 mRad for σ (Bhabha) > 50 nb

GEANT study: reality toward δL/L ~ 10⁻⁴ beampipe material → multiple scattering, EM shower beampipe shape, detector position → spatial resolution

LumiCal + : Geometry and detector coverage

Vertex Si volume : wafer surrounding beampipe beampipe Flange : Si disks + LYSO Calorimeter Q-pole front : LumiCal calo using LYSO 2x2 mm² bars outgoing beampipe : Far-Forward Tagger

Luminosity measurement

- *Reference to Z*-lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$
- Luminosity of e⁺e⁻ collisions
 by measuring Bhabha elastics scattering

 $e^+e^- \rightarrow e^+e^-$

QED process, theoretical < 0.1% precision

triggering on a pair of scattered e⁺e⁻

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}} \quad \sigma = \frac{16\pi\alpha^2}{s} \cdot \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2}\right)$$

$$LO \\ \text{diagrams} \qquad \qquad \overbrace{e^+}^{e^-} \quad \overbrace{e^+}^{Z,\gamma} \quad \overbrace{e^-}^{e^+} \quad \overbrace{Z,\gamma}^{V,\gamma} \quad \overbrace{e^+}^{V,\gamma} \quad \overbrace$$

Luminosity precision

Bhabha detection

- $e^+e^- \rightarrow e^+e^-$ elastics scattering *Event signature* 1. $E(e^{\pm}) = E_{beam}$
 - 2. e⁺, e[−] Back-to-Back

• NLO $e^+e^- \rightarrow e^+e^-\gamma$

~1% events

- 1. e⁺, e[−] approximately Back-to-Back
- 2. one electron $E' < E_{beam}$
- 3. Detector e/γ ID, spatial resolution

Study with BHLUMI

- Bhabha cross section
- 33 mRad beam crossing
 - → boosted eeγ distribution

BHLUMI theoretical precision

Bhlumi 4.04 writeup: CERN-TH/96-158

cds.cern.ch/record/310621/files/th-96-158.ps.gz http://cern.ch/~jadach/public/Bhlumi-linux-4.04-export_2002.11.05.tar.gz

Theory uncertainty: 0.25% was **BHLUMI 2**, reported in CPC package paper *http://inspirehep.net/record/321226?ln=en* **The latest BHLUMI 4 report is pushed to < 0.1%**

Reproduce BHLUMI to 0.1%

Bhlumi-linux-4.04-export_2002.11.05.tar.gz Compiled by g77 on SL6, **demo.f** produce numbers as in paper CERN-TH/96-158

BARE1: .024 < θ₁', θ₂' <.058 s'>0.5s

0.1000 0.2320	
Xsec_BARE1 =	169.19520371 Nanob.
error =	0.67481969 Nanob.
Xsec_CALO2 =	136.21881786 Nanob.
error =	0.64151939 Nanob.
euen@henui∩34·~⁄u	work/bblumi/cenc/demo\$

LEP workshop95 on Bhabha established 0.1% precision

Hep-ph/9602393

demo.f 1000000 ev **KeyPia=0, KeyZet=0** CMS = 92.3 GeV User should cross-check the folowing two output cross sections which are calculated and printed at the very end of the output: Workshop95, Table14, BARE1 WW for zmin=0.5: KeyGen=3, KeyPia=0, KeyZet=0 Workshop95, Table18, CALO2 WW for zmin=0.5: KeyGen=3, KeyPia=2, KeyZet=1

Xsec_BARE1 = **162.5295** Nanob.

Error = 0.2061 Nanob.

Hep-ph/9602393

Table 14: Monte Carlo results for the symmetric Wide-Wide ES's BARE1, for matrix elements beyond first order. Z exchange, up-down interference switched off. The center of mass energy is $\sqrt{s} = 92.3$ GeV. Not available x

z_{min}	BHLUMI [nb]	_
.100	$166.892\pm.006$	
.300	$165.374\pm.006$	
.500	$162.530\pm.006$	
.700	$155.668\pm.006$	
.900	$137.342\pm.006$	
		_

BHLUMI calculations

- Theta range input : Th1, Th2 Xcru calculated for Thmin=0.7xTh1 to 2xTh2
- KeyWgt=0 → event wgt=1, for simulation count events in chosen condition scale to Xcru

BARE1 X section: (of the bhlumi paper) Th1 $<\theta_1$ ' and θ_2 ' < Th2, s'> 0.5s Use BARE1 as reference

Theoretical Error ~ 10^{-3}

is static, dependings on parameters → if there will be more precise calculation it is constant scaling

 \rightarrow it does not limit us from pursuing 10⁻⁴

Bhabha back-to-back boosted by 33 mRad beam crossing

- Bhlumi electrons boosted for the 33 beam crossing by ~16.5 mRad to +x direction
- Compared for Bhabha selection conditions

Bhabha X sec. vs Lab z-axis round pipe

- CMS generated th1=10 mRad → boosted +16.5mRad, +X are low angle Bhabha
- beampipe is LAB z-axis centered, radius = 30 mRad (r=30mm @z=1m) at x=+30 mm, Bhabha electrons are of θ = 13.5 mRad
- → Off beam pipe, detect: one electron (262 nb) / both electrons (74.6 nb) = 3.51

→ Hori. cut +/- 30mm : one electron (51.8 nb) / both electrons (49.1 nb) = 1.05

Bhabha X section

beampipe, r= 30 mRad (vertical) → σ(Bhabha) > 50 nb (r=30mm @z=1m)

CMS 10 ~ 80 mRad		LAB detect ONE electron		LAB detect both electrons	
BARE1		off beampipe full phi coverage	off beampipe cut off ±30mm	off beampipe full phi coverage	off beampipe cut off ±30 mm
Nevents	457232	102535	20277	29194	19216
Xsec (nb)	1168.3	262.0	51.81	74.60	49.10

Low θ Bhabha, ONE electron detected

LumiCal beampipe is round $\varphi = 40 \text{ mm}$?

- LOW angle Bhabha on x-axis one electron detected (+x side)
- the other electron (-x side) is boosted/lost into beampipe

- ID boosted Bhabha
 by a *Far-Forward tagger* 10 mRad < θ < 30 mRad
 for the lost electron
- σ_{Bhabha} is 5x higher

H. Wang

BHLUMI study summary

- Bhabha ∂_{min} ~30 mRad for ~50 nb
 both back-to-back electrons detected
- 33 mRad beam crossing
 LumiCal +x edge having boosted low θ particles (θ-16.5mRad)
 - ✓ X5 Bhabha cross section, ONE electron detected
 - ✓ forward physics, SM NLO, two-photon
 - → add far-forward taggers to explore this region

GEANT simulation Intrinsic spatial resolution due to multiple scattering, EM shower

LumiCal GEANT versions

- Code originated from a Si calo test-beam for lateral shower
- Version CDR: a SiW sandwich detector no upstream material
- Version post-CDR:
 - a Cone shape beampipe: optimizing spatial resolution a Tube shape close to real pipe, how to get off Mul.Scattering

CONE beampipe, electron impact position

GEANT simulation precision is 0.1 MeV

Si wafer behind beam-pipe cone face, whatever material thickness, Impact position is not effected by multiple scattering/fragmentation → Better than 1 µm

50 GeV electron, shoot LumCal center theta = 40 mRad

Precision on electron impact position

Compare Flange having two 1X0 Tungsten layers OR NOT

GEANT particles of 0.1MeV Hits of charged shower secondaries on Si layers

Spatial Resolution of piled up hits (50 GeV electrons)

Front 2 Si-layers of Q-pole LumiCal Pileup of shower ~1 mm resolution

Three Si layers at Z>670 mm NO Tungsten layers Spatial resolution ~ 20 μm

1st Si layer behind Beampipe cone at Z=515 mm Hit deviation better than $1 \, \mu m$

4392. 0.9098E-02

1.066

550.6

-0.4777E-02 1.353

85.40 / 13

0.5150E-03

0.2716E-01

0.2

728.4 -0.1928E-03

132.6 / 13

0.2155E-01

0.2

108.9

0.4796E-03

0.1781E-01

0.2

15.96 / 13

1477.

10

10

Spatial Resolution of **piled up hits** (50 GeV electrons)

Front 2 Si-layers of Q-pole LumiCal Pileup of shower ~1 mm resolution

Three Si layers at Z>670 mm Two 1X0 Tungsten layers behind Si wafers Spatial resolution $\sim 20 \,\mu m$

1st Si layer behind Beampipe cone at Z=515 mm Hit deviation better than 1 µm

TUBE beam-pipe, preshower in beampipe

acos(.99) = 141.54 mRad @Z=118 → r= 16.81 (=tanQ*118) acos(.992)=126.58 mRad @Z=118 → r= 15.02 mm Q= 100mRad @Z=118 → r= 11.84 mm @Z=153 → r=15.35 mm

Z=0~115 mm Z=0~115 mm inner radius 28/2+1 mm 0.35mm thick inner r=28/2+1 mm, 0.35 mm thick

Si octagon wafers surrounding beampipe Si wafer attach to beampipe Impact position w. minimum effect multiple scattering/shower

Position(Hits) – Electron shower

Position(Hits) – Electron shower

GEANT simulation summary

- Intrinsic spatial resolution
 scattered by multiple scattering, bremsstrahlung
- Luminosity δL/L=10⁻⁴, θ_{min}=30 mRad
 δL/L~2 δθ/θ_{min} for : δθ = 1.5 μRad
 @ z= 0.5m, dr= 0.75μm; dz=dr/tan(.03)= 25μm
- Electron traversing 1mm thick Al beampipe
 @30 mRad, z=0.5m, dz in beampipe = 33 mm
 GEANT multiple scattering RMS = 50 μm
- δL/L is the "error on the mean" off the fiducial edge
 1. analytic on Multi. Scattering (GEANT)
 2. detector resolution spectrum on fiducial edge

Detector options

Silicon wafer on beampipe

Calo for beam eletron/gamma ID

LumiCal Si-wafer option

LumiCal Si wafer volume

round beampipe $\phi = 28 \text{ mm}$ $\theta = 30 \text{ mRad} @ z = 500 \text{ mm}$

○ Si wafer option:

binary strip, pitch in z,

resolution for 25 μ m = pitch/V12 \rightarrow pitch = 86 μ m

Multi.scattering (50 µm) is narrower, can be differentiated

Assuming Si strip 300 μ m thick, ADC readout, pitch = 100 μ m, resolution by the fraction of entrance strip (low z)

→ fire 100 strips @ 30 mRad ← rather extreme for Si strip resolution by charge sharing on the edge strip

7=620 mm

LumiCal Calo option

• Calo options

spatial resolution is not good LYSO + SiPM is compact minimize space for electronics

○ In the flange, as preshower

front wafer disk (20µm) + 50 mm LYSO for e/γ ID, NLO Bhabha etc

front wafer disk (1 mm) + 100 mm LYSO

for Bhabha beam electron EM shower

Far-forward tagger

Bhabha scattered electrons

Symmetric to out-going beam-pipe, NOT the LAB frame

→ hit @ +x Lab frame : ϑ_{cms} is 16.5 mRad lower

LumiCal @ Lab +x region is VERY HOT by low θ beam electrons tag Bhabha electrons by far-forward tagger back-to-back in θ/φ to LumiCal hit

Detector option: LYSO+SiPM in a ring, slide to position

Conclusion

- Bhabha feasibility studied for luminosity of 10⁻⁴
- \circ X-section matches to Z(qq) pole
- $_{\odot}$ Spatial resolution with Si-wafer in z, \sim 25 μm
- LYSO + SiPM for Calo, compact in space for electronics
- Continue on prototyping of Detectors and Electronics