Progress of Vertex Detector Design

Zhijun Liang

MDI related

- High precision vertex detector essential for $H \rightarrow bb/cc/gg$ and $H \rightarrow \tau\tau$
- Single point resolution < 3 $\mu m \rightarrow$ Vibration need to be control to μm level
- Radiation tolerance (per year): 1 MRad $\&2 \times 10^{12}$ 1 MeV n_{eq}/cm^2
- Material budget : <0.15%X₀ per layer
- Power consumption: < 50 mW/cm² layer , temperature <30 °C
- B layer radius : As close to the beam pipe as possible
- Fast readout time: <500ns @40MHz at Z pole

$$\sigma_{r\varphi} = 3 \ \mu m \oplus \frac{10 \ \mu m}{p(\text{GeV}) \cdot \sin^{3/2}\theta}$$

Vertex Detector Concept in CEPC CDR

Main focus in this workshop

- Vertex detector in CDR
 - Three double layer Barrel + Endcap disk
- Towards TDR (need engineering design)
 - Need support structure
 - Need to consider cooling
 - Need to handle cabling and other service

	R (mm)	z (mm)	$ \cos \theta $	$\sigma(\mu{ m m})$	_
Layer 1	16	62.5	0.97	2.8	
Layer 2	18	62.5	0.96	6	
Layer 3	37	125.0	0.96	4	
Layer 4	39	125.0	0.95	4	
Layer 5	58	125.0	0.91	4	
Layer 6	60	125.0	0.90	4	

CMOS PIXEL SENSOR

- Monolithic pixel (CMOS imaging CIS process or SOI process) is ideal for CEPC application
 - low material budget (can be thin down to 50μm)
 - Material budget is about 5-10 times smaller than Hybrid pixel technology
 - Lots of development on going: Jadepix and Taichu chip...

Monolithic Pixels

Barrel Vertex detector machanism design

Engineering design on the ladder (module) of vertex detector and support structure. **Monolithic Sensor chip**: 14.8 x 25.6 x 0.05 mm (not consider stitching yet)

Ladder: support structure + chips + flexible PCB

By Jinyu Fu

2020/5/27

Vertex detector module

By Jinyu Fu & Mingyi Dong

- **Requirement** : Material budget 0.15%X₀ per layer
- First draft of CEPC vertex module design: double layer module
 - Monolithic silicon sensor(50µm)+ flex cable(18µm Aluminum trace) + Carbon fiber Support (100µm)
 - Material budget barely within $0.15 \ \% X_0$ per layer at small incident angle
 - Need to be rigid in air cooling. Need further optimization

Rigidity of the ladder support structure

- Finite element simulation of the ladder model with the support with sensors and flexible PCB
 - Maximum deformation:4 μm (with 100 μm thin carbon fiber support)
- Need to simulate the dynamic vibration in air cooling in next step
- Need to find a balance between rigidity and low material budget
- Prototype of ladder support structure will be fabricated in a carbon fiber foundry.

By Jinyu Fu

After the flexible PCB with sensors glued on, the rigidity of the full ladder is increased by 24% compare to that of the support itself.

resolution < $3 \mu m$

(vibration µm level)

POWER CONSUMPTION AND COOLING

- > To reduce material budget, air cooling is prefer in lepton collider
 - > However CDR do not provide a path for the air to flow through the detector
 - Need engineering design
- How much power consumption can air cooling handle ?
 - Most of us consider the upper limit is about 10 mW/cm²
 - Estimated power dissipation of vertex detector is ~50 mW/cm²
 - Star HFT detector managed to cool 150 mW/cm²
 - > One of the key is without endcap disk in Star detector
 - Air flow can be much larger (10m/s) without endcap

The STAR MAPS-based PiXeL Detector NIM, A 907 (2018) 60-80

POWER CONSUMPTION AND COOLING (2)

CLIP proposed an concept of air cooling vertex detector with endcap (Spirals geometry)
 Air cooling + power pulsing (20ms gap between bunch trains)

Interface between vertex detector and beam pipe

- Short barrel + endcap disk (air cooling)
 - CLIP Spirals concept
- Long barrel design
 - Star HFT detector (Barrel only, air cooling)
 - BELLE2 vertex detector (no endcap disk, air cooling)
 - SLD vertex detector (Long barrel, More details in Chris Damerell's talk yesterday)
- CEPC Vertex detector- beampipe interface :
 - Start engineering work with Long barrel design (Quan Ji)
 - Re-visit Short barrel + endcap disk after we gain enough experience

Star HFT vertex detector(Long barrel design)

BELLE2 vertex (no endcap disk)

VERTEX DETECTOR WITHOUT ENDCAP ? (LONG BARREL)

> CEPC Vertex detector- beampipe interface :

Start engineering work with Long barrel design (more in Quan Ji's talk) Re-visit Short barrel + endcap disk after we gain enough experience

VERTEX DETECTOR WITHOUT ENDCAP ?

- \succ Long barrel was not ideal in the past, with hybrid thick pixel sensor (300 μ m)
 - Charge sharing in small incident angle track help to improve resolution
 - \succ Large incident angle track cause large charge sharing \rightarrow low S/N

C. Kenney et al. NIM A 654 (2011) 258-265

Average of extreme pixels in the cluster gives better results In this case the signal (and the S/N) for a single channel reduces with track inclination Timepix3: X. Llopart, J. Buytaert, M. Campbell, P. Collins et al.

Can optimize resolution using track inclination to enhance charge sharing, can also be done using a magnetic field VERTEX DETECTOR WITHOUT ENDCAP ? (LONG BARREL)

Using thin CMOS pixel sensor, charge sharing effect is small

- > Cluster size and charge sharing can be control using thin active layer silicon
- In-pixel amplifier in electronics improved S/N
- No major technical issue of long barrel design

Conventional pixel detector

Preliminary study on long barrel performance

- Impact parameter resolution for few GeV track
 - Long barrel design (Green) compared to "short Barrel + endcap" (Red)
 - Slightly better in long barrel design , No visible shower stopper of long barrel design
 - More study and optimization to be done ...

Thermal simulation

- Even using long barrel design with large Air flow
 - However, the temperature b layer of vertex detector is still high (>50 °C)
 - Too close to beampipe (limited air flow)
 - New idea about new material (Graphene) (Quan's talk)
 - Much High heat conductivity compared to Carbon fiber
 - What is Limitation in air velocity ?
 - Star HFT detector manage to provide 10m/s air flow)

Thermal simulation (By Jinyu Fu)

Power dissipation (mW/cm2)	Temperatu re of beam pipe's surface (°C)	Inlet air temperature (°C)	Inlet air velocity (m/s)	Max temperature of inner barrel (°C)	Max temperatur e of middle barrel (°C)	Max temperature of outer barrel (°C)
50	30	0	2	57.1	29.1	26.9
50	30	0	3	54.5	24.3	22.9
50	30	0	4	52.3	21.3	19.9

Power consumption: < 50 mW/cm² layer ,

temperature <30 °C

Graphene

Plan

- Start Iteration on Engineering optimization and physics performance optimization
 - A vertex-beampipe Layout version presented in Quan's talk today
 - Physics simulation and performance study to this layout in about one month
 - Invite more colleague to provide feedback to layout (tracker, Calo, physics impact)

Manpower, Funding

- Existing funding
 - CEPC MOST2 project (12M RMB)
 - ~0.5M for vertex detector support structure prototype
- Existing Manpower
 - Faculty: Jinyu Fu, Mingyi Dong, Gang Li, Zhijun Liang, Joao Costa
 - Student: Hao Zeng , Kewei Wu

Summary

• Engineering design for the vertex detector module and vertex-beam pipe interface

Parameters	Requirement	Status
Cooling	Silicon temperature <30 °C	2 nd and 3 rd layer can be handled. Air Cooling of B layer still an issue
Material budget	<0.15%X ₀ per layer	OK at barrel region 50% -100% higher at forward regions
Resolution	< 3 μ m Vibration with μ m levels	Statics finite element simulation Next step: Dynamic simulation with air cooling Vibration test using carbon fiber support

Cabling design in BELLE2

Work on optimization of cabling in next step

- > With electronics colleague on electronics boards (radiation hardness)
- Space optimization in Beampipe area (with Quan)

Backup: The radius of B layer of pixel detector

- the temperature b layer of vertex detector is still high
 - B layer is too close to beampipe (limited air flow)
 - Move the B layer a bit away ?
 - Impact parameter decreased 5-10% by moving 2mm

- CEPC study on material of vertex detector :
 - Increase material budget by 300%
 - 20~30% impact worse on 1GeV track very small impact on 10GeV track (<10%)
- Fcc-ee study on material of vertex detector :
 - Increase material budget by 50%, small impact on impact parameter resolution

Fcc-ee CLD detector

Material requirement can be relaxed!

LIST OF REQUIREMENT

- Requirement on material
- Requirement on detector single point resolution
- Requirement on Power consumption and cooling
- Requirement on Timing

REQUIREMENT ON DETECTOR SINGLE POINT RESOLUTION

- \succ CEPC/Fcc-ee requirement: 3µm single point resolution
- > Vertex detector single point resolution gave large impact of d0 resolution
- Should try hard to improve single point resolution !

Fcc-ee CLD detector

(from Philipp Roloff's talk in Fcc workshop)

CEPC baseline detector

REQUIREMENT ON DETECTOR SINGLE POINT RESOLUTION > Keeping σ_{sp} =3µm,

- > Need to design a very small pixel (~17µm) with Digital readout
- \succ Or One can design large pixel (~40µm), with analog readout (with a few ADC)

From Auguste Besson's talk in Fcc workshop

 $\Rightarrow \sigma_{sp} \sim 3 \ \mu m \ \Leftrightarrow \text{ pitch} \sim 17 \ \mu m \ (not 25 \ \mu m !)$

REQUIREMENT ON BEAMPIPE RADIUS

\succ Keeping σ_{sp}

- > The smaller beampipe, closer of first pixel layer to beam spot
- Fcc-ee Reduced the beampipe radius from 17mm to 12mm
- Improve d0 resolution by 30~40%

LIST OF REQUIREMENT

- Requirement on Material
- Requirement on detector single point resolution
- Requirement on Power consumption and cooling
- Requirement on radiation hardness

REQUIREMENT ON RADIATION HARDNESS

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness : ~18 μ m
 - Pixel size : $25\mu m \times 25\mu m$

REQUIREMENT ON RADIATION HARDNESS

Radiation tolerance (per year): 1 MRad &2×10¹² 1 MeV n_{eq}/cm²

PIXEL SENSOR R&D

DEVELOPED CMOS PIXEL SENSOR PROTOTYPES FOR CEPC

Prototype	Pixel size (μm²)	Readout time	Power Consumption	In-pixel circuit	R/O architecture	Main goals	Status
JadePix1	33 × 33 16 × 16	~100 µs	~ 100 mW/cm ²	SF/amplifer, analog output	Rolling shutter	Sensor optimization	Lab. and beam test finished
JadePix2	22 × 22	~100 µs	< 100 mW/cm ²	amp., discriminator, binary output	Rolling shutter	Small pixel, Power < 100 mW/cm ²	Electrical functionality verified
MIC4	25 × 25	~10 µs	<26mW/cm ²	Low power front-end, address encoder	Data-driven, Asynchronous	Small pixel, fast readout for ZH run	Electrical functionality verified
JadePix3	16 × 26 16 × 23.11	~10 µs	<26mW/cm ²	Low power front-end, binary output	Rolling shutter with end of col. priority encoder	Small pixel, low power	In fabrication
Taichu-1	25×25	~50ns	100~200 mW/cm ²	binary output	Data-driven, Priority encoder	Full Functionalities Fast readout for Z pole	Fabricated, To be tested

All prototypes in TowerJazz 180 nm CIS process

FUNDED BY MOST AND IHEP

JADEPIX-1 PIXEL

Y.Zhang, et al, NIMA 831(2016)99-104

- + 1^{st} prototype sensor developed with TJ 0.18 μm CIS process
- Primary goal: diode geometry optimization

Impacts of electrode size and footprint on charge collection performance

Supported by the State Key Lab of Particle Detection and Electronics & IHEP Innovation fund, with lots of helps from IPHC

• Submission in November 2015, test system developed and verified in 2016; detailed performance characterization in 2017& 2018

	Resolution	Readout Speed	TID	Power Consumption
Jadepix-1 (TJ180nm)	3∼7µm (Beam test)	~100 μ s integration time Analog readout test chip		~100mW/cm2

JADEPIX-1 RESOLUTIONS

- 5~7 μ m spatial resolution achieved in DESY electron beam test
- Getting close to CEPC requirement: 3 μ m single point resolution

Beam telescope resolution to extracted to derive pixel resolutions

JADEPIX-1 RADIATION HARDNESS

- CEPC requirement: have 2×10¹² 1 MeV n_{eq}/cm² per year
- Neutron Irradiation up to 10¹³ Neq/cm²
 - Signal to Noise ratio above 50 after irradiation
 - Jadepix-1 met CEPC requirement

TAICHU-1: FAST READOUT + FULL FUNCTIONALITIES By IHEP, SDU, NWPU, IFAE & CCNU team

Funded by MOST 2

- CEPC readout time requirement:
 - 500ns deadtime @40MHZ(Z pole)
- TAICHU-1 Column-drain readout
 - Priority based data driven readout; time stamp at EOC
 - Dead time: 2 CLK for each pixel (50ns @40MHz CLK)
 - Two digital pixel designs: FEI3-like and ALPIDE-like design

• 2-level FIFO architecture

- L1: column level, to de-randomize injecting charge
- L2: chip level, to match in/out data rate between core and interface
- Trigger readout:
 - Coincidence by time stamp, matched event read out

TAICHU-1: FAST READOUT + FULL FUNCTIONALITIES

- CEPC time stamping precision requirement:
 - 25-50ns, can time stamping each collision at Z pole
- Taichu-1 pixel analog design:
 - 75ns~150ns (based one standard CMOS MAPS tech.)
 - Consider to use depleted CMOS MAPS

By IHEP, SDU, NWPU, IFAE & CCNU team

Standard : no full depletion

Modified : full depletion, faster charge collection

TAICHU-1: (FULL FUNCTIONALITIES + FAST READOUT)

• First MPW tapeout was submitted in June

- Chip received on Nov. 15, 2019
 - With 60 chips, now wire bonding with test PCBs
- One block area of 5mm×5mm was fully occupied
 - A full functional pixel array (small scale)
 - 85% of the block area
 - A 64×192 Pixel array + Periphery + PLL + Serializer
 - Bias generation included
 - I/O arranged in one edge, as the final chip
 - other independent test blocks (less critical)
 - LDO + PLL

Chip size: 5mm×5mm Pixel size: 25µm×25µm

	Resolution	Readout Speed	TID	Power Consumption
Taichu-1 (TJ 180nm)	3∼5µm	~50ns@40MHz Digital readout	Te be tested	100~200mW/cm2

VERTEX DETECTOR PROTOTYPE

- Plan to build full size vertex detector prototype
 - Three double layer vertex detector
 - With Fractions of the modules will be installed
 - Supported by MOST , 12M RMB

	R (mm)	z (mm)	$ \cos \theta $	•
Layer 1	16	62.5	0.97	I
Layer 2	18	62.5	0.96	
Layer 3	37	125.0	0.96	
Layer 4	39	125.0	0.95	
Layer 5	58	125.0	0.91	
Layer 6	60	125.0	0.90	

Funded by MOST 2

Radiation Length by Component(Jinyu)

VERTEX DETECTOR PROTOTYPE: MODULE DESIGN

- **Requirement** : Material budget 0.15%X₀ per layer
- First draft of CEPC module design:
 - Material budget can barely 0.15 %X₀ per layer at 90 degree
 - Need to be rigid in air cooling, Difficult to reduce material budget

VERTEX DETECTOR PROTOTYPE

- IHEP has experience on building single-side modules
 - R & D module assembly scheme for double-side modules
- Collaboration with Livepool on detector support structure
 - New idea from Livepool of the ladder structure reinforcement.
 - Produce sample and test them in next step

Single-side HRCMOS pixel module for BESIII

Idea about the detector support structure

Conceptual Design of VTX Support –V1

Sensor chip : 14.8 x 25.6 x 0.05 mm (2mm wide margin at one side for wire bonding)

