

Dual-Readout Calorimetry R&D Programme Status

Roberto (on behalf of the IDEA proto-collaboration) $May 6^{th}$, 2020

Project breakdown

1) mechanics (absorber, structure, ...)

- 2) optical elements (fibre core, cladding, filters, ...)
- 3) light sensors
- 4) front-end electronics
- 5) data readout and processing
- 6) simulations and detector performance

- absorber choice (copper/brass, iron, lead, ... ?)

- absorber structure (dimensions and production methods of basic elements)

- definition of procedure for "tower" assembly
- 4π projective geometry breakdown

1) Mechanics - objectives

1) refine possible absorber choices

2) select and validate a scalable tower-element production and assembly technique

- \rightarrow tubelets, molding, rolling, extruding, ... 3D printing
- → piling up / gluing
- → fibre deposition/insertion (fibres in metal tubes ?)

3) identify and validate mechanical self-supporting structure

4) identify and validate a 4π projective geometry solution

1) refine possible absorber choices

2) full-hadronic-containment module \rightarrow validate both hadronic and em performance (resolution, particle id)

2) 4π projective geometry solution

- investigate fibre production

- fibre selection (attenuation length, numerical aperture, light mirroring)

- quality control and assurance
- matching with light-sensor PDE

- target light yields of ~ 100 Cpe/GeV and 400 Spe/GeV \rightarrow O(10-30) attenuation of S signals

- obtain attenuation length of much longer than 2 m (scintillation-light yellow filtering)

- optimise matching to SiPM PDE spectrum

(interdependent)

- optical cross-talk: tackle $S \rightarrow C$ contamination (10⁻⁴ ?)

3) Light sensors (SiPMs)

- dynamic range
- linearity
- cross-talk
- analog grouping
- digital SiPMs ?

3) Light sensors - objectives

- investigate standard vs. custom SiPM

- dynamic range: correctly handle 2-5 k photons over a single sensor

- validate (1-10) channel analog grouping (\rightarrow linearity)
- investigate digital SiPMs ?
- Čerenkov-light sensing \rightarrow UV sensitive SiPMs ?
- build/spread sensor qualification setups and expertise

- signal integration vs. sampling
- off-the-shelf vs. custom ASIC
- FPGA for information reduction (feature extraction)

Likely at present the most complex issue

4) FE electronics - objectives

- qualify commercial ASICs (Citiroc1A, MUSIC, ...)
- assess needed information (Q, Peak, ToA, ToT, ToP)

- assess time resolution requirements for longitudinal position reconstruction

- investigate feature extraction logic embedded on ASIC

5) Data readout and processing

1) Online:

- strongly depends on ASIC choice (FERS + data collector)

- sampling would require hard real-time digital processing
- neural networks for triggering purposes

2) Offline:

- exploit/validate neural networks for complex final-state identification and reconstruction

6) Detector performance

- Energy resolution (e/ γ , single hadrons, jets, μ)
- Position (angular) resolution: resolve $\pi^0 \rightarrow 2\gamma$ decays
- Virtual longitudinal segmentation: exploit timing
- Isolated particle ID: e / γ / μ / single hadrons
- Complex particle ID: τ hadronic decays, e/ γ within jets

- Identification and reconstruction of final states from Z/W/H \rightarrow jj, H \rightarrow ZZ*/WW* \rightarrow 4j, H \rightarrow $\gamma\gamma$, Z/H \rightarrow $\tau\tau$ decays

Project schedule and funding

2020 (em) prototype with tubelers:

- work ongoing with delays of few months for COVID-19 crisis. The testbeam schedule needs to be reassessed

Full scale prototype(s):

- funding available in Korea for a 5-year R&D project to build and qualify a "full-hadronic-scale" projective prototype

- in Europe, no fund beyond 2020 is yet secured, preparing requests for a 3-year R&D project

Backup

2020 prototype

New idea: use tubelets (Zagreb RBI proposal)

2020: build a ~10×10×100 cm³ prototype w/ 2 mm diameter tubelets

- \rightarrow 60 horizontal layers of 51 tubes
- \rightarrow 9 readout towers of 17×20 tubes each

central tower \rightarrow SiPM readout 8 surrouding towers \rightarrow PMT readout

Geometry

Tubelets

- 2.0 mm OD, 1.1 mm ID and 1000 mm Length
- ID tolerance: + 0.1 mm and 0.0 mm
- Material: CuZn37, 170 VPN Hardness

→ independently build each 17×20 tower
→ two possible stacking strategies
→ gluing with Araldite 2011-A/B

Stacking strategies

3 options under consideration:

- gluing one layer by one layer
- gluing two layers at once
- divide in three pieces:

Longer time and higher glue consumption but better repeatability

Faster assembly time and lower glue consumption but worse repeatability

Preliminary tests seem to show that :

- horizontal alignment looks "easy"
- vertical alignment looks not that "easy"

→ impact of mechanical tolerances more critical wrt vertical alignment

- tolerances on straightness and external diameter ? \rightarrow waiting for first bunch of tubes

Other big open issue: fibre insertion ? To be studied at both RBI and Pavia

Process breakdown

- RBI : select, test and assembly tubelets study fibre insertion

- INFN Pavia : study and produce mechanics for fibre gathering and distribution study fibre insertion

- U. of Sussex : select and qualify S and Č fibres attenuation length, light yield, numerical aperture

- INFN Milano (Insubria) : SiPM selection and readout chain

see Romualdo's slides

Constraints & TB

RBI funding require a working prototype by end 2020

Beam tests at Desy in fall 2020 (to be reallocated)

AoB

Simulations in progress (first preliminary results on τ hadronic decays expected soon) \rightarrow timing capabilities the key

Physics analisys \rightarrow exploiting excellent DR angular resolution for $\gamma\gamma$ final state reconstruction (axion-like particle searches)

Funding requests within AIDAinnova in progress