The status of Semi-Digital Hadronic calorimeter

Speaker: Bing Liu, On behalf of the CEPC SDHCAL groups

May 6, 2020

Outline

• Semi-Digital Hadronic calorimeter (SDHCAL) concept

• SDHCAL ongoing activities

New module0 progress

- Detectors
- Readout electronics
- Gas recycling

• Future activities

Conclusions

Particle Flow Algorithm (PFA) oriented Calorimeter

$\begin{array}{cccc} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- & m_H, \sigma(ZH) \\ H \rightarrow \mu^+\mu^- & BR(H \rightarrow \mu^+\mu^-) \end{array} & \text{Tracker} & \Delta(1/p_T) = \\ 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}\theta} \\ \hline H \rightarrow b\bar{b}/c\bar{c}/gg & BR(H \rightarrow b\bar{b}/c\bar{c}/gg) \end{aligned} & \text{Vertex} & \sigma_{r\phi} = \\ 5 \oplus \frac{10}{p(\text{GeV})\times\sin^{3/2}\theta}(\mu m) \\ \hline H \rightarrow q\bar{q}, WW^*, ZZ^* & BR(H \rightarrow q\bar{q}, WW^*, ZZ^*) \end{aligned} & \begin{array}{c} \text{ECAL} & \sigma_E^{jet}/E = \\ \text{HCAL} & 3 \sim 4\% \text{ at 100 GeV} \\ \hline \Delta E/E = \end{array}$	Physics process	Measurands	Detector subsystem	Performance requirement	Tracker
$ \begin{array}{cccc} H \rightarrow b\bar{b}/c\bar{c}/gg & \mathrm{BR}(H \rightarrow b\bar{b}/c\bar{c}/gg) & \mathrm{Vertex} & \sigma_{r\phi} = \\ 5 \oplus \frac{10}{p(\mathrm{GeV}) \times \sin^{3/2}\theta}(\mu\mathrm{m}) \\ \hline H \rightarrow q\bar{q}, WW^*, ZZ^* & \mathrm{BR}(H \rightarrow q\bar{q}, WW^*, ZZ^*) & \frac{\mathrm{ECAL}}{\mathrm{HCAL}} & \sigma_E^{\mathbf{jet}}/E = \\ \hline HCAL & 3 \sim 4\% \text{ at 100 GeV} \\ \hline H \rightarrow \gamma\gamma & \mathrm{BR}(H \rightarrow \gamma\gamma) & \mathrm{ECAL} & \Delta E/E = \end{array} $	$\begin{array}{c} ZH,Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	photon pion
$\frac{H \rightarrow q\bar{q}, WW^*, ZZ^*}{H \rightarrow q\bar{q}, WW^*, ZZ^*} \xrightarrow{\text{ECAL}} \frac{\sigma_E^{\text{jet}}/E}{\text{HCAL}} \xrightarrow{3 \sim 4\% \text{ at 100 GeV}} \xrightarrow{\text{electron}} \xrightarrow{\text{electron}} \xrightarrow{\text{neutron}} \xrightarrow{\text{neuron}} \xrightarrow{\text{neutron}} \xrightarrow{\text{neutron}} \xrightarrow{\text{neutron}} \xrightarrow{\text{neuron}} \xrightarrow$	$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o b ar b/c ar c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$	
$H \rightarrow \gamma \gamma$ $BR(H \rightarrow \gamma \gamma)$ $ECAL$ $\Delta E/E =$ electron neutron	$H \rightarrow q \bar{q}, WW^*, ZZ^*$	${\rm BR}(H o q \bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at 100 GeV	ECAL
$\underbrace{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$ High granularity calorimeter	$H\to\gamma\gamma$	${ m BR}(H o \gamma\gamma)$	ECAL	$\Delta E/E = onumber \ rac{0.20}{\sqrt{E(ext{GeV})}} \oplus 0.01$	electron neutron High granularity calorimeter

HCAL technology options in CEPC CDR →SDHCAL with RPC (Baseline) →SDHCAL with THGEM →AHCAL with scintillator + SiPM

SDHCAL prototype — Main features

Detector: **GRPC** (glass resistive plate chamber, 1 X 1 m²) operating in avalanche mode

Advantages of Resistive Plate Chambers:

- High efficiency
- Good Homogeneity
- Well contained avalanches
- Not expensive, robust, ...

1×1 cm² pads.

Semi-Digital readout, 2bits — 3 thresholds

Counts how many and which pads have a signal larger than one of three thresholds

Energy resolution

SDHCAL Since 2011

5

1 cm x 1 cm pads, 48 layers, power-pulsed, mechanical self-supporting structure

TB: 2012,2015, 2016, 2017 and 2018 with ECAL

Hadronic shower

Hits associated to: 1st threshold (110 fC) 2nd threshold (5pC) 3rd threshold (15pC)

Homogenization of the SDHCAL response

→Use the muons threshold scan to study both efficiency and multiplicity.
 →Use the average multiplicity and that of the second and the third threshold efficiency as a reference and then for each ASIC change the thresholds to obtain the average values.

Before homogenization

After homogenization

6

SDHCAL: Particle identification

→ BDT helps to improve the hadron/e/mu PID, purify TB samples. → Keep 99% of pion efficiency and to reject >99% of e/mu.

SDHCAL: Particle identification

SDHCAL: Particle identification

First common test with the technological SiW ECAL prototype

Common DAQ: same start acquisition (using the spill start)

SDHCA

ECAL

Combined test: SDHCAL + SiW ECAL

SiW ECAL

- → 9 working layers (several layers malfunctioning)
- → Placed in front of SDHCAL
 SDHCAL
- \rightarrow 37 GRPC layers present in prototype

SDHCAL Module0 progress: Detectors

Construction and operation of large GRPC necessitate some improvement with respect to the present scenario.

Gas distribution : new scheme is proposed

Cassette conception to ensure good contact between the detector and electronics is to be improved

SDHCAL Module0 progress: Detectors

First 2x1 m² RPC chamber was successfully built with a new gas circulation system

SDHCAL Module0 progress: New electronics

ASU (Active Sensor Unit)

An important challenge is to build a PCB up to 1m length with good planarity to have a homogeneous contact of pads with RPCs in order to guarantee an uniform response along all the detector.

A company was found and 1x0.33 m2 with 13 layer ASUs have been built.

The ASU-ASU (= ASU-DIF) connections also produced

New electronics

Two ASUs are being connected and tested

A CAN

THE PARTY

ar free

SDHCAL Module0 progress: Gas system

Gas recycling is necessary to reduce cost : -Goal: reduce the gas consumption to reduce the cost. -Gas renewal of 5-10% rather than 100% -Conceived by the CERN gas group and successfully used.

We will start using HFO1234ze soon (GWP=3) We have also now a remotely a gas controller

Timing Measurement in SDHCAL

- Purpose: five dimension Calorimeter
 - Position, energy and timing
- Add **MRPC** layers in the SDHCAL
 - Same size as RPC
- Front-end board for MRPC readout
 - Charge and timing measurement simultaneously
 - PETIROC2A from OMEGA group
 - 25 ps timing measurement step
 - Timing resolution: <10 ps

Timing Measurement in SDHCAL

Active cooling

- CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. →Power pulsing will not work at CEPC.
- SDHCAL option
 →Inner radius R_{in} = 2300mm
 →Outer radius R_{out} = 3340mm
 →Inner/Outer of HCAL endcap in Z-axis : 2670mm/3710mm

Area of the active layers : →40 active layers in barrel and endcaps → ~3800m² (barrel) + ~2800m² (endcaps)

- Total heat power :
- → 60M channels (~1mW/channel) → 60kW + readout boards ...

● Heat affects:
 → Electronics stability, detector unit performance, structure deformation

Active cooling

cooling pipes

no cooling

cooling at 6th layer

cooling at each

PCB with resistors to mimic HARDROC ASIC heat source for cooling design and test.

Active cooling-detecting system

Active cooling

- Cooling plates: water pipes imbedded in metal plates
 - cooling ability: ~kW/m²
 - safety(water is not so good)
 - →Stainless steel
 - poor heat transmission
 - difficult to produce \rightarrow high cost
 - can work as the absorber
 - 500mm×350mm×15mm
 - 8000 yuan(~€1000)/piece

→ Aluminum

- good heat transmission
- easy to produce
- 4 times the interaction length than steel
- 500mm×350mm×10mm
- 608 yuan (~€77)/piece for 3000pcs

Cooling plates

Active cooling-Geant4 simulation

A geant4 simulation for the SDHCAL has been made by the Lyon group. Some changes had to be made to use it for studies on the cooling system for the SDHCAL of CEPC :

Moving from 9.* to 10.* geant4 version allowing to update the simulation (multithreads)

Allowed to change more easily the RPC layers and the absorber structure using json script

{	
"RPCTypes":	
[
{ "Name" : "Standard",	
"Layers" :	
[
{"Name":"FrontCassetteAbsorber" ,"Width": 2.500 ,"Material":"SDHCAL_Steel316L"	},
{"Name":"Mask" ,"Width": 1.600 ,"Material":"SDHCAL_epoxy"	},
{"Name":"PCB" ,"Width": 1.200 ,"Material":"SDHCAL_g10"	},
{"Name":"MylarAnode" ,"Width": 0.050 ,"Material":"G4_MYLAR"	},
{"Name":"GraphiteAnode" ,"Width": 0.050 ,"Material":"G4_GRAPHITE"	},
{"Name":"ThinGlass", "Width": 0.700, "Material":"G4_Pyrex_Glass"	},
{"Name":"GasGap", "Width": 1.200, "Material":"SDHCAL_RPCGaz"	},
{"Name":"ThickGlass" ,"Width": 1.100 ,"Material":"G4_Pyrex_Glass"	},
{"Name":"GraphiteCathode" ,"Width": 0.050 ,"Material":"G4_GRAPHITE"	},
{"Name":"MylarCathode" ,"Width": 0.180 ,"Material":"G4_MYLAR"	},
{"Name":"BackCassetteAbsorber" ,"Width": 2.500 ,"Material":"SDHCAL_Steel316L"	}
]	
}	
1	

Code is being reviewed by the Lyon group for merging.

Trying to implement the Absorber options and to install the software needed for the digitization of the hits coming from geant4 for further studies and comparison with the standard SDHCAL design (With VS without Cooling Systems)

RPCLab DAQ

Some months ago a test using websocket for the DAQ system in the lab has been made : \rightarrow waveDump from CAEN for the digitizer.

- \rightarrow Modified to use websockets and be controlled remotely.
- → Online monitored : <u>http://202.120.13.50/test.php</u>
- \rightarrow Able to talk to elog for Run logging.

But has some drawbacks:

 \rightarrow The program was the server and plotter etc : if there is a crash all crash down

Working at new version DAQ \rightarrow If some crash the other system continue to work and logger report Errors

RWELL Detector development

Detector development methods

- Key issues for RWELL:
- 1. Resistive layer-DLC(Diamond like carbon)
- 2. Bonding method
- Fast grounding method:

Remove Charge accumulated on the DLC layer

• Thermal bonding technique:

Gluing the RWELL foil to the readout board by heating the film

RWELL Detector development

RWELL Detector

Step 3, Thermal boding

Gain test

• Test setup:

- Gain uniformity is not good. Possible reason:
 - 1. Gas flow
 - 2. Uniformity due to the thermal boding procedure

New idea: New readout scheme

The principle is simple: the charge is shared among several pads/pixels The pads/pixels are inter-connected in a smart way so one can identify the position of the impinging particle by identifying the fired strips and thus find the hit as the crossing points.

In addition there is no ambiguity as far as the number of particles crossing the particles is not very high thanks to the use of at least 3 directions strips. Patented: (PCT/EP2018/053561-FR3062926: I.Laktineh)

Summary

- Technological protoype running successfully since 2012
- Many results validate the performance of the SDHCAL concept
- The design for Front-end board for MRPC readout is ongoing
- The simulation and test module for active cooling is progressing
- The new readout scheme is introduced
- The RWELL detector developed as planed
- Strong collaboration with several international research units

Thanks for your attention !