Status of CEPC-AHCAL R&D

Jiechen Jiang

On behalf of the CEPC Calorimeter working Group

OutLine

- Requirements of CEPC-AHCAL prototype
- Optimization of AHCAL energy resolution and tiles
- Scintillator testing platform and KLauS chips
- summary

Background introduction

Requirement

 $\frac{\sigma}{E} = \frac{60\%}{\sqrt{E}} \oplus 3\%$

BMR better than 4%

Structure

- The absorber: 2 cm Stainless steel ($0.12\lambda_{I}$, $1.14X_{0}$);
- Detector cell size: 3 cm×3 cm or 4 cm× 4 cm;
- The sensitive detector : Scintillator;
- SiPMs: HMAMMATSU or NDL;
- About 40 sensitive layers, total readout channels:

11560 (3cmx3cm) , 12960 (4cmx4cm)

• Transverse Dimension:

51 cm*51 cm (3cmx3cm), 72 cm*72 cm (4cmx4cm)

BMR

Energy Resolution

Layer structure: Sc:3mm,PCB:2mm, Fe :20mm Incident particle: π^-

- \rightarrow Improvement of Leakage energy
- \rightarrow Shower start finding
- \rightarrow Efficient events are around 33%

Energy Resolution

Event selection:

- A group with the same maximum energy deposition layer
- Tail description:

Landau or formula function [1]

Compensation layer: Layer>40

[1] $\frac{dE(x)}{dx} = \frac{E_f \beta^{\alpha+1}}{\Gamma(\alpha+1)} x^{\alpha} e^{-\beta x}$

Software Compensation: 5.3%

SC+LC : 4.9%

AHCAL Tiles

AHCAL Tiles

Injection craft:

- Massive production
- High efficiency
- Consistency
- Tile Dimension: 4cmx4cmx3mm
- Cavity Dimension:5.1mmx5.1mmx1.6mm

- The first batch of PS tiles Low light output.
- Improvement
 Ratio of solute and solvent
 Time of mixing

AHCAL scintillator testing platform

STP of AHCAL

Quickly check the uniformity among detector cells

KLauS chips

SP2 and KLauS

- Used in AHCAL
- By Omega, University Heidelberg
- Transistor 180nm (SP2 350nm)
- Power consumption : full operation 3.6mW $sum = 3.6mW * 36 chns = 130mW (SP2 \approx 300mW)$
- Auto/Ext Trigger
- 36 channels
- Dynamic Range : 450pC (SP2 320pC)
- \blacktriangleright Pe/Noise Ratio = 35 (SP2 11)
- \blacktriangleright ADC : 10/12bits
- 4 Gain modes (SP2 2 gain modes)
- Dead time 500ns (SP2 ~ms)
- ✓ The KLauS testing board can work now.

Baseline and Std. distribution

- The energy resolution of AHCAL prototype can be improved by leakage energy compensation algorithm.
- Injection moulding tiles can be produced but light output is low, the craft is optimization.
- Scintillator testing platform have been built up and the batch testing is processing.
- Klaus testing board can work now and some parameters will be measured next.

Backup

Performance Different Structure

Performance with Selection

Events Fluctuation

Leakage Energy Compensation

Reduce the fluctuation of estimate leakage energy

- Average energy deposition in the last 4 layers as estimate energy
- Correct constant term of parameters event by event

Energy(GeV)	10	20	30	40	50
MEDL<36	97.4%	95.9%	96.1%	96.2%	95.2%
Energy(GeV)	60	70	80	90	100
MEDL<36	94.8%	94.3%	95.1%	94.7%	94.3%

MEDL: maximum energy deposition layer

Leakage Energy Compensation

Tuesday 03/24/2020

Simulation of detector cells

Sipm parameters adopted:NDL 1010 series SiPM size: 1.4*1.4*1.mm

Number of SiPM:4

Scan step size:5mm

Number of SiPM:3

Simulate uniformity of detector cell

Simulate uniformity of detector cell

Uniformity deviation value=5.9%

Simulation of detector cells

Scan step size:1mm

Mean value=76.98 p.e. Uniformity deviation value=29.8% The p.e. value is proportional to the number of SiPM

p.e. VS Number of SiPM

KLauS Chips

Figure 3.2: Timing diagram illustrating the analog-digital handshake between the hit-logic and the channel control logic.

Figure 3.1: Block diagram of the KLauS channel in auto-triggered and auto gainselection mode.

Diagram of Control logic