Performance and analyses towards the CEPC Flavor Physics Manqi Ruan

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

07/05/20

CEPC Flavor Physics Discussion

CEPC: a Higgs & Z factory

Particle	Tera-Z	Belle II	LHCb	
b hadrons				
B^+	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \mathrm{ on} \ \Upsilon(4S))$	3×10^{13}	
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	3×10^{13}	
B_s	2×10^{10}	$3 imes 10^8 ~(5 { m ab}^{-1} \ { m on} \ \Upsilon(5S))$	8×10^{12}	
b baryons	1×10^{10}		1×10^{13}	
Λ_b	1×10^{10}		1×10^{13}	
c hadrons				
D^0	2×10^{11}			
D^+	6×10^{10}			
D_s^+	3×10^{10}			
Λ_c^+	2×10^{10}			
$ au^+$	3×10^{10}	$5 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$		

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10^{12} Z-boson decays. We have used the hadronization fractions (neglecting p_T dependencies) from Refs. [431, 432] (see also Ref. [433]). For the decays relevant to this study we also show the corresponding number of particles produced by the full 50 ab^{-1} on $\Upsilon(4S)$ and 5 ab^{-1} on $\Upsilon(5S)$ runs at Belle II [430], as well as the numbers of b hadrons at LHCb with 50 fb^{-1} (using the number of $b\bar{b}$ pairs within the LHCb detector acceptance from [435] and the hadronization fractions from [431]).

Objective

- Via Benchmark Physics Analyses (see Haibo's talk)
 - To quantify the potential and comparative advantage of the CEPC Flavor Physics Program
 - To quantify the Detector performance requirement.
- Limit: Huge statistics, cannot be all processed with Full Simulation.
- Methodology:
 - Full simulation based Performance study
 - Fast simulation based analyses
 - Key point: development and validation of Fast simulation tool, working point optimization, etc...

Key performance to flavor Physics

	CEPC Relative Advantage	Physics Significant	Simple	Strong Dependent on Performance	Status and Foundation	
B0/B+->K*ee Lamdda $c \rightarrow pee$						
B0->K*mumu (P8) Lambda_b → Lambda mumu Lamdda_c → p mumu	Can LHCb rec. Track with sufficient low Energy? Delta(m)/m (q^2)			Lepton id + Pid Low Energy Track Angular + Momentum		
b->stautau (P10) Bs->Phi + tautau B->K* + iny Lambda b → Lambda tau tau	CEPC Golden Channel, as the tau finding in CEPC jet is good CEPC Performance should be very good enough to reconstruct 3-prong decay tau VTX, and low-E track decay from K* (if K* exist)			Reducible Background as Misidentify the D in to tau, by losing one pi0/photon VTX reconstruction. 3- prong tau shall be the golden sub-channel	Tau finding partly understood HKUST has interests	
Bc->taux (P21) B+->taux ()				Touting	Covered, hopefully a presentation can be held in 1-2 week	
				Tau muing +	Tau finding in B-Jet	

Key performances to flavor physics

- Identification of decay final state particles from Jet (against combination background)
- Lepton: identification of isolated, and Jet lepton
- Kaon: identification of Kaon inside jet
- Tau:
 - Finding performance of isolated, and jet tau.
 - Identification of Tau decay final state
- Pi-0 reconstruction performance
- Kshort, Lambda, Phi, J/psi reconstruction
- Missing Energy...
- Jet Flavor Tagging;
- Jet Charge measurement;
- Track threshold, track momentum, photon energy, etc.
- VTX: reconstruction efficiency & accuracy 07/05/20 CEPC Flavor Physics Discussion

Baseline Geometry

CEPC-SIMU-2017-002,

07/05/20

CEPC Flavor Physics Discussion

Software & Reconstruction

Starting from the ilcsoft & replace all the PFA/high-level reconstruction algorithms.

Physics Objects

CEPC Flavor Physics Discussion

Higgs Signals

Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

Right corner: di-tau mass distribution at qqH events using collinear approximation 07/05/20 CEPC Flavor Physics Discussion

Tracking

https://link.springer.com/article/10.1140/epjc/s10052-017-5146-5 CEPC-DocDB-id:148, Eur. Phys. J. C (2017) 77: 591

CEPC Flavor Physics Discussion

Lepton inside Jet

• Identification efficiency/purity slightly degrades w.r.t isolated ones

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

18

Photon: resolution

Photon: Clustering and separation

See Hang Zhao's talk

07/05/20

CEPC Flavor Physics Discussion

pi-0

Tau finding at hadronic events

an overall efficiency*purity higher than 70% is achieved for qqTT, and qqTV events

See Zhigang Wu's talk

tau 1-prong +2photon

Tau finding

- At 91.2 GeV
 - Z->tautau events: eff*purity > 90%
 - Z->qq->tau + X: eff*purity ~ 50%
- At 240 GeV,
 - qqH, H->tautau; WW->qqtauv: eff*purity ~ 70%

K_short, Lambda, Phi

Massive Boson Separation

WW sample: using µvqq sample, Plot: the visible mass without the muon CEPC-RECO-2017-002 (DocDB id-164), CEPC-RECO-2018-002 (DocDB id-171),

07/05/20

See Peizhu Lai's talk

CEPC Flavor Physics Discussion

Eur. Phys. J. C78 (2018) no.5, 426

Jet Energy Scale & Resolution

- JER ~ 3.5% 5.5% for E ~ 20 100 GeV Jets
- Both Superior to LHC experiments by 3-4 times

CEPC Flavor Physics Discussion

See Peizhu Lai's talk

Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

https://agenda.linearcollider.org/event/7645/contributions/40124/ CEPC Flavor Physics Discussion

Key performances to flavor physics

- Identification of decay final state particles from Jet (against combinatory background)
- Lepton: identification of isolated, and Jet lepton
- Kaon: identification of Kaon inside jet
- Tau:
 - Finding performance of isolated, and jet tau.
 - Identification of Tau decay final state
- Pi-0 reconstruction performance
- Kshort, Lambda, Phi, J/psi reconstruction
- Missing Energy...
- Jet Flavor Tagging;
- Jet Charge measurement;
- Track threshold, track momentum, photon energy, etc.
- VTX: reconstruction efficiency & accuracy

We know how the performance is alike in CEPC baseline detector; but we don't know if it's good enough/overkill -> need quantification

Objective - an example: qqH, H→invisible

- Portal to DM...
- qqH dominants the precision & rely on the recoil mass to separate the ZZ bkg
- Essential for qqH analysis, especially H→non jet final state

If the BMR degrades from 4% to 6/8%: the Higgs invisible measurement degrades by 20/50%

CEPC Flavor Physics Discussion

Analyses tactic: recommendation

- What we have: •
 - Signal & Background Generator file _
 - 10M fully simulated Background Z->gg events _
 - Potentially: \sim 1 Million full simulated signal
- Key question: to identify the signal from the background •
 - Contaminations via mis-id of physics objects (inpurity)
 - Resolution _
- Tactic: •
 - Understand the event topology and key signature
 - Workout the finding criteria at Z->qq sample (Event Selection Variables) through MC-truth level analysis
 - For the corresponding physics object workout the optimal working point by maximize the eff*purity at the signal and the SM background - To mimic the contamination/combinatory background
 - Develop the Fast simulation code and validate it on Full simulation distributions on key variable _ distributions

Parameterize the key performance in the Fast simulation code, and extract the final accuracy at different working point. 07/05/20 **CEPC Flavor Physics Discussion**

Summary

- Key physics object identified for the CEPC flavor program: most of their reconstruction performance is analyzed via Full simulation at the CEPC baseline detector
 - Reference point for benchmark physics analysis fast simulation tool
 - Several performance need further quantification (VTX, Jet Charge, Combination background control)
- The existing Full simulated Z->qq sample could be used to study the SM & Combination background analyses.
- Dedicated generator sample/toolkit will be needed for benchmark analyses, however, some fast estimation could be started even before that.

Backup

Generator: a potential barrel

Quantification of the physics requirement: 1st example...

Quantification of the physics requirement: 2nd example...