Flavor Physics @ CEPC a survey

Based on: Oxford meeting, April, 2019 Peking University, July, 2019 IHEP CEPC meeting, Nov. 2019

Hai-Bo Li

Institute of High Energy Physics

Luminosities

From A. Blondel: Oxford

High precisions Higgs couplings at 240 GeV and 350 GeV

- Reconstruct Z
- Determine recoil mass (thanks to be beam-energy constraint, no beamstralhung)

- **Great** e⁺e⁻ asset: Tagged Higgs sample
 - ➡ Total Higgs decay width
 - ⇒ Individual branching ratios to sub %
 - ⇒ Invisible and exotic decays

Hai-Bo Li@IHEP

Expected precision of Higgs property measurements

Property	Estimated Precision
m_H	5.9 MeV
Γ_H	3.1%
$\sigma(ZH)$	0.5%
$\sigma(\nu \bar{\nu} H)$	3.2%

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b\bar{b}$	0.27%	0.56%
$H \to c \bar{c}$	3.3%	3.3%
$H \to gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to Z Z^*$	5.1%	5.1%
$H\to\gamma\gamma$	6.8%	6.9%
$H \to Z \gamma$	15%	15%
$H\to \tau^+\tau^-$	0.8%	1.0%
$H \to \mu^+ \mu^-$	17%	17%
$H \to \mathrm{inv}$	_	< 0.30%

CEPC CDR 2018

Higgs couplings only a part of CEPC program

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L} dt$	_
m_Z	2.1 MeV	0.5 MeV	Z pole	8 ab ⁻¹	E [MeV]
Γ_Z	2.3 MeV	0.5 MeV	Z pole	8 ab^{-1}	
$A_{FB}^{0,b}$	0.0016	0.0001	Z pole	8 ab^{-1}	
$A^{0,\mu}_{FB}$	0.0013	0.00005	Z pole	8 ab^{-1}	o
$A^{0,e}_{FB}$	0.0025	0.00008	Z pole	8 ab^{-1}	-0.5 101.461 101.482 101.465 101.464
$\sin^2 heta_W^{ ext{eff}}$	0.00016	0.00001	Z pole	8 ab ⁻¹	
R_b^0	0.00066	0.00004	Z pole	8 ab^{-1}	improving precision
R^0_μ	0.025	0.002	Z pole	8 ab^{-1}	by >1 order mag.
m_W	33 MeV	1 MeV	WW threshold	2.6 ab^{-1}	, 0
m_W	33 MeV	2-3 MeV	ZH run	5.6 ab^{-1}	
$N_{ u}$	1.7%	0.05%	ZH run	5.6 ab^{-1}	

On Z pole

$$\begin{split} m_{\rm Z} &= 91.1852 \pm 0.0030 \, {\rm GeV} \\ \Gamma_{\rm Z} &= 2.4948 \pm 0.0041 \, {\rm GeV} \\ \sigma_{\rm h}^0 &= 41.501 \pm 0.055 \, {\rm nb} \; , \end{split}$$

$$n_{\nu} = \left(\frac{\Gamma_{inv}}{\Gamma_{lept}}\right)^{meas} / \left(\frac{\Gamma_{inv}}{\Gamma_{lept}}\right)^{SM}$$

LEP $n_{\nu} = 2.9840 \pm 0.0082$

Limited by uncertainty due to calculation of Bhabha scattering. Improved by a factor of 2-3 at CEPC

 $\varGamma_{\rm inv}/\varGamma_{\ell\ell}=5.942\pm0.027$.

Z DECAY MODES

											Scale fa	ctor	/
	Mode					F	raction (I	г _і /Г)		Con	fidence	leve	a
Г1	e ⁺ e ⁻					[a]	(3.3632	2±0.004	2) %				_
Γ2	$\mu^+\mu^-$					[a]	(3.3662	2 ± 0.006	б) %				
Гз	$\tau^+\tau^-$					[a]	(3.3696	5 ± 0.008	3) %				
Г4	$\ell^+\ell^-$					[a,b]	(3.3658	3 ± 0.002	23) %				
Γ ₅	$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$												
Γ ₆	$\ell^+\ell^-\ell^+\ell^-$					[c]	(4.58	±0.26) × 1	0-6	1		
Γ7	invisible					[a]	(20.000	± 0.055	5)%		1		
Г ₈	hadrons					[a]	(69.911	± 0.056	i)%]		
											-		
Г ₄₀	(D_{1}^{0}/D_{1}^{0}) X		(20.7	±2.0)%								
Γ ₄₁	D [±] X		(12.2	± 1.7) %								
Г ₄₂	$D^{*}(2010)^{\pm}X$	[d]	(11.4	± 1.3)%								
I 43	$D_{s1}(2530) \pm X$		(3.6	±0.8	$) \times 10^{-3}$	F62	$e^{\pm}\mu^{\mp}$		LF [d]	< 7.5	×	10-7	CL=95
Г 44 Г	$D_{sJ}(2573)^{-1} \times D^{*}(2520)^{\pm} \times$	_	(5.8	±2.2) × 10 ° °	Γ ₆₃	$e^{\pm}\tau^{\mp}$		LF [d]	< 9.8	×	10-6	CL=95
145 E46	BX	5	earched	IOF		Г ₆₄	$\mu^{\pm}\tau^{\mp}$		LF [d]	< 1.2	×	10-5	CL=95
Γ40 Γ47	B*X					Г ₆₅	pe		L,B	< 1.8	×	10-6	CL=95
Γ ₄₈	B ⁺ X	[e]	(6.08	±0.13)%	Г ₆₆	ρ μ		L,B	< 1.8	×	10-6	CL=95
Γ ₄₉	B ⁰ _s X	[e]	(1.59	±0.13)%								
Γ ₅₀	B _c X	s	earched	for									
Γ ₅₁	Λ ^Ť X		(1.54	±0.33)%								
Г ₅₂	ΞÕX		seen										
Γ ₅₃	Ξ _b ×		seen										
Γ ₅₄	b-baryon X	[e]	(1.38	± 0.22) %								
20/	/5/6				Hai	-Bo Li@IH	EP						8

Flavors Production at different experiments

Particle	@ Tera- Z	@ Belle II		@ LHCb
b hadrons				
B^+	6×10^{10}	3×10^{10}	$(50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	$) 3 \times 10^{13}$
B^0	6×10^{10}	3×10^{10}	$(50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	$) 3 \times 10^{13}$
B_s	2×10^{10}	3×10^8	$(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$	8×10^{12}
b baryons	$1 imes 10^{10}$			1×10^{13}
Λ_b	$1 imes 10^{10}$			1×10^{13}
c hadrons		h.		
D^0	2×10^{11}			
D^+	$6 imes 10^{10}$		Hu	ge amount
D^+_{ϵ}	3×10^{10}		ot	charmed hadrons
Λ_c^{+}	$2 imes 10^{10}$		m	ore than trillions
τ^+	$3 imes 10^{10}$	$5 imes 10^{10}$	$(50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$)

From CEPC's CDR using fragmentation ratios from Amhis et al, 17

Hadrons contain double heavy quarks can be produced at CEPC and LHCb .

Key probes with flavors

> CP violation in quark and lepton sectors

CPV in B/Bs/D/Ds/Bc mesons

CPV in b-baryon and c-baryon decays

CPV in tau production and decays,

tau EDM

FCNC processes:

rare *b*-decays, rare charm,

cLFV in tau decays

FCNC in Z decays

Measurements of Polarization, Forward-backward asymmetries, etc.

New hadron spectroscopy @ Z pole

Leading experiments on Heavy quarks

LHCb sees all species of *b*- and c-particles, and is especially good at rare decays with muons and fully charged decay modes. However less efficient for electrons, neutrals, missing energy. The backgrounds are complicated for a hadron machine.

Belle II should explore deeply the B_d and B_u meson systems. Might also runs above the Y(5S) threshold but can't resolve the oscillation and TD CPV of B_s meson, and cannot do Bc and b-baryons.

FCNC: "New" in loop W iu, c, t' 'w/cft Z /rx Z S(d)s(d) lt L=e, M, T $B^{\circ} \rightarrow K^{(*)} l^{+} l^{-} z$ B" >K" ZY 10-6 $B_{S} \rightarrow \phi \ell^{+} \ell^{-}$ BS-> \$ 20 10-6 $\mathcal{B}_{c}^{+} \rightarrow \mathcal{P}_{s}^{(\mathbf{x})+} \ell^{+} \ell^{-}$ 16-7120 $B^{\circ} \rightarrow l^{+} l^{-} 10^{-10}$ Bct > Dt 22 Bs -> l+ L- BR(Ath)-10-9 Zero 16-> 1" lt 1-3 10-6 Be > vv

20/5/6

Highlights: rare decays

FCNC processes: DNA for new physics

Observable	Current sensitivity	Future sensitivity	Tera- Z sensitivity
$BR(B_s \rightarrow ee)$	2.8×10^{-7} (CDF) [438]	$\sim 7 imes 10^{-10}$ (LHCb) [435]	$\sim {\rm few} \times 10^{-10}$
$BR(B_s \rightarrow \mu\mu)$	0.7×10^{-9} (LHCb) [437]	$\sim 1.6 \times 10^{-10} \ \mathrm{(LHCb)} \ \mathrm{[435]}$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s \to \tau \tau)$	$5.2 \times 10^{-3} \text{ (LHCb) [441]}$	$\sim 5 imes 10^{-4}$ (LHCb) [435]	$\sim 10^{-5}$
R_K, R_{K^*}	$\sim 10\%$ (LHCb) [443, 444]	~few% (LHCb/Belle II) [435, 442]	\sim few %
${\rm BR}(B\to K^*\tau\tau)$	-	$\sim 10^{-5}$ (Belle II) [442]	$\sim 10^{-8}$
${\rm BR}(B\to K^*\nu\nu)$	4.0×10^{-5} (Belle) [449]	$\sim 10^{-6}$ (Belle II) [442]	$\sim 10^{-6}$
${\rm BR}(B_s \to \phi \nu \bar{\nu})$	1.0×10^{-3} (LEP) [452]	-	$\sim 10^{-6}$
${ m BR}(\Lambda_b o \Lambda u ar{ u})$	-	-	$\sim 10^{-6}$
${\rm BR}(au o \mu \gamma)$	4.4×10^{-8} (BaBar) [475]	$\sim 10^{-9}$ (Belle II) [442]	$\sim 10^{-9}$
${\rm BR}(au ightarrow 3\mu)$	2.1×10^{-8} (Belle) [476]	$\sim { m few} imes 10^{-10}$ (Belle II) [442]	$\sim { m few} imes 10^{-10}$
$\frac{\mathrm{BR}(\tau \to \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \to e \nu \bar{\nu})}$	3.9×10^{-3} (BaBar) [464]	$\sim 10^{-3}$ (Belle II) [442]	$\sim 10^{-4}$
$BR(Z \rightarrow \mu e)$	7.5×10^{-7} (ATLAS) [471]	$\sim 10^{-8}$ (ATLAS/CMS)	$\sim 10^{-9} - 10^{-11}$
${\rm BR}(Z\to \tau e)$	9.8×10^{-6} (LEP) [469]	$\sim 10^{-6}$ (ATLAS/CMS)	$\sim 10^{-8}-10^{-11}$
${\rm BR}(Z\to\tau\mu)$	1.2×10^{-5} (LEP) [470]	$\sim 10^{-6}$ (ATLAS/CMS)	$\sim 10^{-8}-10^{-10}$

Angular analysis: $B^0 \rightarrow K^* \mu^+ \mu^-$

 $J/\psi(1S)$

 $\mathcal{C}_{\tau}^{(\prime)}$

 $4 [m(\mu)]^2$ 20/5/6 $C_7^{(\prime)}C_9^{(\prime)}$

 $\frac{d\Gamma}{dq^2}$

Rich information in the angular analysis

- 1) Polarizations
- 2) Forward-backward asymmetry
- 3) Access to amplitudes of K*
- 4) Access to Wilson coefficients
- 5) 8 observables in the fit

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \bigg|_{\mathrm{P}} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l - F_{\mathrm{L}} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg],$$

Hai-Bo Li@IHEP

Local tension is still there

LHCb: arXiv:2003.04831

Theory predictions from JHEP 12 (2014) 125, JHEP 09 (2010) 089,

b \rightarrow s $\tau^+\tau^-$ at CEPC

- Performance of mass resolution of mu+mu-
- Background?
- tauonic decay modes: $B \rightarrow K^* \tau^+ \tau^-$, $\Lambda_h \rightarrow \Lambda \tau^+ \tau^-$
- Invisible modes: $B \rightarrow K^* \nu \bar{\nu}$?

PhysRevLett.120.181802 Phys. Rev. D **93**, 034005 Phys. Rev. D **96**, 053006

$$\begin{split} & \text{Br}(B^+ \to K^+ \tau^+ \tau^-)_{\text{SM}} = (1.22 \pm 0.10) \cdot 10^{-7}, \\ & \text{Br}(B^0 \to K^0 \tau^+ \tau^-)_{\text{SM}} = (1.13 \pm 0.09) \cdot 10^{-7}, \\ & \text{Br}(B^+ \to K^{*+} \tau^+ \tau^-)_{\text{SM}} = (0.99 \pm 0.12) \cdot 10^{-7}, \\ & \text{Br}(B^0 \to K^{*0} \tau^+ \tau^-)_{\text{SM}} = (0.91 \pm 0.11) \cdot 10^{-7}, \\ & \text{Br}(B_s \to \phi \tau^+ \tau^-)_{\text{SM}} = (0.73 \pm 0.09) \cdot 10^{-7}, \\ & \text{Br}(\Lambda_b \to \Lambda \tau^+ \tau^-) = 2 \times 10^{-7} \end{split}$$

Discovery potential of New Physics: FCNC

FCNC: pure leptonic decays

LHCb and CMS, arXiv:1411.4413

$$B(B^0 \to \mu\mu) = (3.94^{+1.58+0.31}_{-1.41-0.24}) \times 10^{-10} (3.2\sigma)$$
$$B(B_s \to \mu\mu) = (2.79^{+0.66+0.26}_{-0.60-0.19}) \times 10^{-10} (6.2\sigma)$$

$$\begin{split} B(B^0 \to \mu \mu) &= (1.06 \pm 0.09) \times 10^{-10} & \text{Theom}\\ B(B_s \to \mu \mu) &= (3.66 \pm 0.23) \times 10^{-10} & \text{PRL}\\ &_{\text{Hai-Bo Li@IHEP}} \end{split}$$

ory: Bobeth et al. 112(2014)101801

FCNC: pure tauonic decays

C. Bobeth et al., Phys. Rev. Lett. 112, 101801 (2014)

Br
$$(B_s \to \tau^+ \tau^-)_{\text{SM}} = (7.73 \pm 0.49) \cdot 10^{-7},$$

Br $(B_d \to \tau^+ \tau^-)_{\text{SM}} = (2.22 \pm 0.19) \cdot 10^{-8}.$

Bellell cannot reach SM predictions.

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
${\rm Br}(B^0 o au^+ au^-) \cdot 10^5$	< 140	< 30	< 9.6
${\rm Br}(B^0_s\to\tau^+\tau^-)\cdot 10^4$	< 70	< 8.1	_

Detailed study at CEPC should be done.

$b \rightarrow s \nu \bar{\nu}$ at CEPC

► SM predicts rates of $b \rightarrow s\nu\bar{\nu}$ decays at the level of few ×10⁻⁶ (e.g. WA, Buras, Straub, Wick 0902.0160; Buras, Girrbach, Niehoff, Straub 1409.4557)

▶ SM rates of $B \to K^{(*)}\nu\bar{\nu}$ can be observed at Belle II.

Observables	Belle $0.71 \text{ab}^{-1} (0.12 \text{ab}^{-1})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${\rm Br}(B^+ o K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} \nu \bar{ u})$	< 180%	26%	9.6%
${ m Br}(B^+ o K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%

(Belle II Physics Book 1808.10567)

$b \rightarrow s \nu \bar{\nu} at CEPC$

In addition to B → Kνν̄ and B → K*νν̄, CEPC can also access B_s → φνν̄ and Λ_b → Λνν̄

Combined study of

 $B \rightarrow K \nu \bar{\nu}$ (pseudo-scalar to pseudo-scalar) $B \rightarrow K^* \nu \bar{\nu}$ and $B_s \rightarrow \phi \nu \bar{\nu}$ (pseudo-scalar to vector) $\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ (spin 1/2 to spin 1/2)

can be used to determine the chirality structure of the short distance interactions.

$b \rightarrow s \nu \bar{\nu} at CEPC$

Naive expectation:

Sensitivities for $B \to K^{(*)} \nu \bar{\nu}$ should be at least as good as Belle II.

At Belle II the recoiling *B* needs to be fully reconstructed \rightarrow big hit in efficiencies. Not neccessary at CEPC.

At CEPC similar sensitivities for $B_s \rightarrow \phi \nu \bar{\nu}$ and $\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ as well. (not accessible at Belle II).

- ▶ Signature of $B \rightarrow K \nu \bar{\nu}$: single charged track + missing energy.
- Study is under way to estimate the CEPC sensitivity.
- ▶ for the K^* , ϕ final states, one can get the *B* vertex from the decays $K^* \to K\pi$, $\phi \to KK$.
- \Rightarrow might further improve the sensitivities.

CKM and CPV

$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ $(\overline{\rho}, \overline{\eta})$ $V_{ud}V_{ub}^{*}$ ϕ_{2} $V_{td}V_{tb}^{*}$ $V_{cd}V_{cb}^{*}$ $\phi_{3} \gamma$ $\beta \phi_{1}$ (1, 0)

Phase-I

Hai-Bo Li@IHEP

Phase-II

Hai-Bo Li@IHEP

Improvement on CKM matrix

	Summer 18	Current	Phase I	Phase II
A	0.0129	0.0120	0.0058	0.0057
λ	0.0002	0.0007	0.0004	0.0004
$ar{ ho}$	0.0085	0.0085	0.0027	0.0018
$ar\eta$	0.0083	0.0087	0.0024	0.0015
V _{ub}	0.000076	0.000096	0.000027	0.000023
$ V_{cb} $	0.00073	0.00070	0.00026	0.00025
$ V_{td} $	0.00017	0.00014	0.00006	0.00006
$ V_{ts} $	0.00068	0.00054	0.00026	0.00025
$\sin 2\beta$	0.012	0.015	0.004	0.003
α (°)	1.4	1.4	0.4	0.3
γ (°)	1.3	1.3	0.4	0.3
β_{s} (rad)	0.00042	0.00042	0.00012	0.00010

Current = Summer 18 with perfect agreement of inputs with SM

	CEPC (10 ¹² Z)	Belle II (50 ab^{-1} @ $\Upsilon(4S)$	LHCb (50 fb ⁻¹)
		& 5 fb ⁻¹ $@\Upsilon(5S)$)	
B^{\pm}/B^{0}	$6 imes 10^{10}$	$3 imes10^{10}$	$3 imes 10^{13}$
Bs	$2 imes 10^{10}$	$3 imes 10^8$	$8 imes 10^{12}$
B _c	10 ⁸	-	$6 imes 10^{10}$
b baryons	10 ¹⁰	-	10 ¹³

CEPC vs. Belle II: access to B_s , B_c , Λ_b ; much larger boost, resulting in better reconstruction of $D_{(s)}$ and τ vertices (this helps fighting background without tagging the 2nd B). However the energy of the initial meson/baryon is unknown. CEPC vs. LHCb: lower yields but cleaner environment, lower background; much better access to final states with neutrals (photons, $\pi^0 \dots$).

Possibly best $b \rightarrow c$ and $b \rightarrow u$ channels @CEPC

 $B \to \tau v$: extraction of $|V_{ub}|$ and test of NP; BR at the level of 10^{-4} . $B \to D^{(*)} \tau v$ and $B_s \to D_s^{(*)} \tau v$: test LFU/LFV NP in $b \to c$ by taking the ratio with the corresponding $(\mu, e)v$ channels; BR at the level of 10^{-2} . $B \to \pi(\rho)\tau v$ and $B_s \to K^{(*)}\tau v$: same as above, for $b \to u$; BR at the level of 10^{-5} .

 $B_c \rightarrow \eta_c, J/\Psi \ell \nu$: extraction of $|V_{cb}|$; BR at the level of 10^{-2} . $B_c \rightarrow \eta_c, J/\Psi \tau \nu$: again test LFU/LFV BP in $b \rightarrow c$; BR at the level of 10^{-2} .

All these channels need further work to compare CEPC performance wrt LHCb.

 $B_c \rightarrow \tau v$: extraction of $|V_{cb}|$ and test of NP; BR at the level of 10^{-2} . $B_c \rightarrow \tau v$ is presumably impossible at LHCb: a golden channel for CEPC ?

Inclusive versions of the above channels are also interesting complementary measurements that cannot be performed at a hadron collider.

Bc decays

- The B_c is largely uncharted territory.
- Several decay modes are "seen" at the LHC, but no well established normalization mode exists

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c).$ $\Gamma_1 = J/\psi(1S)\ell^+\nu_\ell$ anything $(8.1 \pm 1.2) \times 10^{-5}$ $\Gamma_2 = J/\psi(1S)\mu^+\nu_\mu$ $\begin{array}{ccc} \Gamma_3 & J/\psi(1S)\tau^+\nu_{\tau} \\ \Gamma_4 & J/\psi(1S)\pi^+ \end{array}$ seen $\Gamma_5 = J/\psi(1S)K^+$ seen $\Gamma_6 = J/\psi(1S)\pi^+\pi^+\pi^$ seen $\Gamma_7 \qquad J/\psi(1S)a_1(1260)$ $\times 10^{-3}$ < 1.2 90% $\Gamma_8 = J/\psi(1S)K^+K^-\pi^+$ seen $\Gamma_9 = J/\psi(1S)\pi^+\pi^+\pi^+\pi^-\pi^$ seen $\Gamma_{10} \quad \psi(2S)\pi^+$ seen $\Gamma_{11} = J/\psi(1S) D^0 K^+$ seen $\Gamma_{12} = J/\psi(1S) D^*(2007)^0 K^+$ seen $\begin{array}{ccc} & & & \\ \Gamma_{13} & & J/\psi(1S) D^*(2010)^+ K^{*0} \\ & & \\ \Gamma_{14} & & & J/\psi(1S) D^+ K^{*0} \end{array}$ seen seen $\Gamma_{15} \quad J/\psi(1S)D_s^+$ seen $\Gamma_{16} = J/\psi(1S)D_{s}^{*+}$ seen $\Gamma_{17} = J/\psi(1S)p\overline{p}\pi^+$ seen $\Gamma_{18} \quad \chi_{c}^{0} \pi^{+}$ $(2.4 \ +0.9 \ -0.8) \times 10^{-5}$ $\Gamma_{19} \quad p \overline{p} \pi^+$ not seen $\Gamma_{20} D^0 K^+$ $(3.8 \ ^{+1.2}_{-1.0}) \times 10^{-7}$

Bc production at Z pole

- \triangleright *B_c* has not been seen at LEP.
- ► Theory predictions suggest BR(Z → B_c + X) could be as large as ~ 10⁻⁴

(e.g. Braaten et al. hep-ph/9305206, Deng et al. 1009.1453, Yang et al. 1305.4828)

 \Rightarrow up to ~ 10⁸ B_c mesons from 10¹² Z bosons $Z^{0}(k)$ \overline{b} $\overline{c}(q_{1})$ $\overline{c}(q_{1})$

 $\mathcal{B}(Z \to B_c + b + \bar{c}): 10^{-4}$

For recent review on Bc production at Z : arXiv:1701.04561

Event generator on Z peak: arXiv:1305.4828

$Bc \rightarrow \tau \nu$

- Hard for LHCb, not reachable for Belle II, $Br(B_c \rightarrow \tau^- \bar{\nu}_\ell) = O(2\%)$
- Two lattice determinations
 - $f_{B_c} = 427 \pm 6 \text{ MeV}$ (McNeile et al. 2012)
 - $f_{B_c} = 434 \pm 15 \text{ MeV}$ (Colquhoun et al. 2015)
- Original constraint for $|V_{cb}|$ (helping solve discrepancy)

$$\mathsf{BR}(B_c \to \tau \nu) : \mathsf{BR}(B_c \to \mu \nu) : \mathsf{BR}(B_c \to e\nu) = m_\tau^2 : m_\mu^2 : m_e^2$$

 $B^- \to \tau \nu$

- Already studied (but difficult, many backgrounds) at Babar and Belle, measured at $Br(B \rightarrow \tau \nu) = (1.09 \pm 0.24) \times 10^{-4}$
- Many lattice determinations with FLAG average (2+1 flavours): $f_B = 192 \pm 4.3 \text{ MeV}$

$$Bc \rightarrow \tau \nu$$
 and $B \rightarrow \tau \nu$ are background each other ?

Bc decays @ Z peak

 $B_c o au^+
u_ au$ 3% PLB 414 (1997) 130 < 10% from LEP1 PRD 96(2017)075011 $B_c \to J/\psi l^+ \nu_l$ 1.36% PRD 68(2003)094020 $B_c \rightarrow J/\psi \pi^+ \quad 6.4 \times 10^{-4}$ PRD90(2014) 094007 Estimated based on LHCb measuremnt $B_c \to B_s \pi^+$ 10% PRD 94(2016) 034036 $B_c \rightarrow B_s + anything$ $R = \frac{\mathcal{B}(B_c \to J/\psi \tau \nu)}{\mathcal{B}(B_c \to J/\psi l \nu)}$ $B_c \to J/\psi + anything$

Exciting new spectroscopy awaiting discovery

- narrow exotics with $Q\bar{Q}$: BESIII & LHCb Belle $\bar{D}D^*$, \bar{D}^*D^* , $\bar{B}B^*$, \bar{B}^*B^* , $\Sigma_c\bar{D}^*$ molecules
- heavy deuterons: $\Sigma_c D^*$: LHCb $P_c(4450) \Rightarrow$ photoproduction $\Sigma_c B^*$, $\Sigma_b \overline{D}^*$, $\Sigma_b B^*$
- doubly charmed baryon found exactly where predicted $\Xi_{cc}^{++}(ccu) \Rightarrow (bcq)$, (bbq)
- stable bbūd
 tetraquark: LHCb!
- $cc\bar{c}\bar{c}$ @ 6,192 \pm 25 MeV, $bb\bar{b}\bar{b}$ @ 18,826 \pm 25 MeV \Rightarrow 4 ℓ
- quark-level analogue of nuclear fusion

Calculation of tetraquark $bb\bar{u}\bar{d}$ mass

From Marek CEPC Peking meeting 2019

build on accuracy of the Ξ_{cc} mass prediction

 $V(bb) = \frac{1}{2}V(\bar{b}b)$

to obtain lowest possible mass, assume:

- bbūd
 in S-wave
- \$\bar{u}\bar{d}\$: \$\mathbf{3}_c\$ "good" antidiq., \$S=0, \$I=0\$ (it's the lightest one)
- \Rightarrow *bb* must be $\overline{3}_{c}$; Fermi stats: spin 1
- $(bb)_{S=1}(\bar{u}\bar{d})_{S=0} \Rightarrow J^P = 1^+.$
- \Rightarrow (*bb*)($\bar{u}\bar{d}$) very similar to *bbq* baryon:

M. Karliner, Heavy exotics

CEPC, PKU, Beijing, 2 July 2019

bbq baryon

44

two v. different types of exotics: $Q\bar{Q}q\bar{q}$ QQāā e.g. $T(bb\overline{u}\overline{d})$ $Z_b(10610)$ ĒR∗ tightly-bound molecule tetraquark

likely a general rule

Tetraquark production

 $\sigma(pp \to T(bb\bar{u}\bar{d}) + X \lesssim \sigma(pp \to \Xi_{bb} + X)$ same bottleneck: $\sigma(pp \to \{bb\} + X)$

hadronization:

$$\{bb\} \to \{bb\}q \\ \{bb\} \to \{bb\}\bar{u}\bar{d} \} P(\bar{u}\bar{d}) \lesssim P(q) \\ \mathbf{3}_c \mathbf{3}_c \mathbf{3}_c \mathbf{3}_c$$

LHCb observed $ccu = \Xi_{cc}^{++}$

 $\sigma(pp \rightarrow \Xi_{bb} + X) = (b/c)^2 \cdot \sigma(pp \rightarrow \Xi_{cc} + X)$

$$\Rightarrow \Xi_{bb} \text{ and } T(bb\bar{u}\bar{d}) \text{ accessible,}$$
with much more $\int \mathcal{L} dt$
$bb\bar{u}\bar{d}$ decay channels

(a) "standard process" $bb\bar{u}\bar{d} \rightarrow cb\bar{u}\bar{d} + W^{*-}$. $(bb\bar{u}\bar{d}) \rightarrow D^0\bar{B}^0\pi^-, D^+B^-\pi^ (bb\bar{u}\bar{d}) \rightarrow J/\psi K^-\bar{B}^0, J/\psi\bar{K}^0B^-$. $(bb\bar{u}\bar{d}) \rightarrow \Omega_{bc}\bar{p}, \Omega_{bc}\bar{\Lambda}_c, \Xi^0_{bc}\bar{p}, \Xi^0_{bc}\bar{\Lambda}_c$ In addition, a rare process where $both \ b \rightarrow c\bar{c}s$, $(bb\bar{u}\bar{d}) \rightarrow J/\psi J/\psi K^-\bar{K}^0$.

striking signature: $2J/\psi$ -s from same 2ndary vertex

(b) The W-exchange $b\bar{d} \rightarrow c\bar{u}$ e.g. $(bb\bar{u}\bar{d}) \rightarrow D^0B^-$.

M. Karliner, Heavy exotics

CEPC, PKU, Beijing, 2 July 2019

$T(bb\bar{u}\bar{d})$ Summary

- stable, deeply bound bbud tetraquark
- $J^P=1^+$, $M(bbar{u}ar{d})=10389\pm12$ MeV
- 215 MeV below BB* threshold
- first manifesty exotic stable hadron

•
$$(bb\bar{u}\bar{d})
ightarrow \bar{B}D\pi^-, J/\psi\bar{K}\bar{B}, J/\psi J/\psi K^-\bar{K}^0, D^0B^-$$

- $(bc\bar{u}\bar{d})$: $J^P = 0^+$, borderline bound 7134 ± 13 MeV, 11 MeV below $\bar{B}^0 D^0$
- $(cc\bar{u}\bar{d})$: $J^P = 1^+$, borderline unbound 3882 \pm 12 MeV, 7 MeV above the D^0D^{*+}

From Marek

CEPC Peking

meeting 2019

Inclusive signature of (bbx): displaced B_c

T. Gershon & A. Poluektov JHEP 1901 (2019) 019

Diagram for production of a B_c^- meson from a double beauty hadron decay.

$\mathcal{O}(1\%)$ of all B_{c} -s @LHC come from bbx

- major enhancement of eff. bbx rate
- bbq or bbūd ?

incl. $\sigma(bbx)$: heavy ions $\gg pp$

 \Rightarrow displaced B_c @ALICE & RHIC !

Productions: doubly heavy Tetraquark

Access to doubly heavy Tetraquark at CEPC

Channel	Minimum	Minimal quark	Threshold	Example of
	isospin	content ^{a,b}	$(MeV)^{c}$	decay mode
DD̄*	0	с <i></i> сq	3875.8	$J/\psi \pi \pi$
$D^*\bar{D}^*$	0	с <i></i> сqq	4017.2	$J\!/\psi\pi\pi$
D^*B^*	0	сБqq	7333.8	$B_c^+\pi\pi$
$\bar{B}B^*$	0	bb̄qq̄	10604.6	$\Upsilon(nS)\pi\pi$
$ar{B}^*B^*$	0	bb̄qq̄	10650.4	$\Upsilon(nS)\pi\pi$
$\Sigma_c \bar{D}^*$	1/2	c̄c̄qqq′	4462.4	$J\!/\psi$ р
$\Sigma_c B^*$	1/2	cb̄qqq′	7779.5	$B_c^+ p$
$\Sigma_b ar{D}^*$	1/2	b̄cqqq′	7823.0	B _c ⁻ p
$\Sigma_b B^*$	1/2	bb̄qqq′	11139.6	$\Upsilon(nS)p$
$\Sigma_c \bar{\Lambda}_c$	1	cc̄qq'ūd̄	4740.3	$J/\psi \pi$
$\Sigma_c \bar{\Sigma}_c$	0	cc̄qq'q̄q̄'	4907.6	$J/\psi \pi \pi$
$\Sigma_c \bar{\Lambda}_b$	1	cБqq'ūd	8073.3 ^d	$B_c^+\pi$
$\Sigma_b \bar{\Lambda}_c$	1	bc̄qq' ūd̄	8100.9 ^d	$B_c^-\pi$
$\Sigma_b \bar{\Lambda}_b$	1	bb̄qq' ūd̄	11433.9	$\Upsilon(nS)\pi$
$\Sigma_b \bar{\Sigma}_b$	0	bb̄qq'ā̄q̄'	11628.8	$\Upsilon(nS)\pi\pi$

Thresholds for $Q\bar{Q}'$ molecular states

^aIgnoring annihilation of quarks. ^bPlus other charge states when $I \neq 0$. ^cBased on isospin-averaged masses. ^dThresholds differ by 27.6 MeV.

M. Karliner, Heavy exotics

CEPC, PKU, Beijing, 2 July 2019

ISR Physics: access to different thresholds

CEPC:
$$\mathcal{L} \sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

with rad. ret. can explore interesting physics significantly below design E_{CM} .

Integrated luminosity from past low energy e^+e^- colliders at their nominal centerof-mass energies compared to the effective luminosity through radiative return from future e^+e^- colliders at $\sqrt{s} = 90$ or 250 GeV

interesting thresholds for heavy flavor production in e^+e^-

T . 1		PRD92, 035010 (2015)
Final state	Threshold	
	$({ m MeV})$	
$B\bar{B}$	10559	Pollo II oporgy
$B\bar{B}^*$	10605	belle-li ellergy
$B^*\bar{B}^*$	10650	
$B_s \bar{B}_s$	10734	
$B_s \bar{B}_s^*$	10782	
$B_s^* \bar{B}_s^*$	10831	
$B_{s0}\bar{B}_s^*$	$11132 - 11193^a$	
$\Lambda_b \overline{\Lambda}_b$	11239	
$B_c \bar{B}_c$	12551	
$B_c \bar{B}_c^*$	$12619 - 12635^{b}$	
$B_c^* \bar{B}_c^*$	$12687 - 12719^{b}$	
$\Xi_{bc} \bar{\Xi}_{bc}$	$13842 - 13890^{c}$	
$\Xi_{bb} \bar{\Xi}_{bb}$	$20300 - 20348^c$	

FCNC: cLFV in Z decays Lorenzo 2019

- LHC searches limited by backgrounds (in particular $Z \rightarrow \tau \tau$): max ~10 improvement can be expected at HL-LHC (3000/fb)
- CEPC can definitely reach better sensitivities
- Severe indirect constraints from low-energy LFV observables, e.g.:

FCNC: cLFV in Z decays

FCC physics opportunities Eur. Phys. J. C (2019) 79:474

• $Z \rightarrow \ell \tau$:

- Very important test in view of the LFU anomalies in B decays
- With 10¹² Z, CEPC has no problem of statistics
- Can systematics (lepton-id efficiencies? what else?) be controlled so as to measure BRs with e.g. 10⁻⁴ precision?

Lorenzo Peking University 2019

(Q: Is any EW precision expert studying this?)

Z WG outlook	Lorenzo Peking University	
	2019	
Ideal wish list:		
LFV: Study of the muon mis-id for μ -e		
Signal & background study for ℓ - τ		
LFU: Estimate of the achievable precision given the systematics		

Personal (more *realistic*) view:

 $Z \rightarrow \mu e$ is a nice process but

barring extreme tuning indirect bounds overwhelming

(sensitivity on $\mu \rightarrow e$ LFV will improve > ×1000 within a decade!)

For $Z \rightarrow \ell \tau$ we can readapt FCC-ee simulation

The priority should be to focus Z LFU assessment!

tau lepton at Z peak

Advantage of tau experiment at Z peak:

- Large production cross-section (1.5 nb)
- Strong boost, decay length: 2 mm
- Back-to-back event topology, 80% efficiency
- Background clean
- Good lepton and $K_L ID$

Disadvantage: K/piID is challenge

tau lepton reconstruction @ Z peak

tau lepton reconstruction at Z-peak

i nysics processes	Efficiency (70)	Contamination (70)
$Z^0 \rightarrow \tau^+ \tau^-$	$78.84 ~\pm~ 0.13$	
Bhabha		$0.15~\pm~0.03$
$Z^0 \rightarrow \mu^+ \mu^-$	千上的法	$0.07~\pm~0.02$
$\gamma\gamma \rightarrow e^+e^-$	云 入时双	0.07 ± 0.02
$\gamma\gamma \rightarrow \mu^+\mu^-$	家县田口	0.08 ± 0.02
four-fermion	中尼四川	0.14 ± 0.02
cosmic rays	何诰成的	$0.02~\pm~0.01$
$Z^0 \rightarrow q\overline{q}$		0.31 ± 0.09
$\gamma \gamma \rightarrow \mu^+ \mu^-$ four-fermion cosmic rays $Z^0 \rightarrow q \overline{q}$	率是因几 何造成的	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Belle: 10% efficiency

Hai-Bo Li@IHEP

Requirement

- For charged tracks
 - Good momentum measurement
 - Good π /K separation (PID for tracks up to 30GeV?)
 - Good vertex: lifetime, background suppression
- For γ/π^{0}
 - Good geometric coverage
 - Fine granularity with longitudinal readout
 - Good energy resolution and angular resolution
 - Low photon energy threshold: < 200 MeV</p>

CEPC potential as a "Tera-Z factory": BR $(Z \rightarrow \tau^+ \tau^-) \simeq 3.4\%$

$$10^{12} Z \implies (3 \times 10^{10} \tau^+ \tau^-)$$

Tau physics @ Z pole

tau properties: lifetime, mass,

(g-2)_tau (10⁻⁶-10⁻⁷), EDM (10⁻¹⁹ e cm)

Weak Dipole Moments

Tau: CPV (10⁻⁴)

tau decay measurements

Lepton Universality test (LUT)

charged Lepton flavor violation (cLFV) (10⁻¹⁰)

Vus

branching fractions (10⁻⁵)

hadron spectral function

Tau LFU: prospects

M. Dam @ Tau '18 & 1811.09408

 $(g_{ au}/g_{e\mu}) = 1.0020 \pm 0.0013$ $[g_{e\mu} = g_e = g_\mu$ assuming $g_e = g_\mu]$

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _t [MeV]	Threshold / inv. mass endpoint	1776.86 ± 0.12	0.005	0.12	Mass scale
τ _τ [fs]	Flight distance	290.3 ± 0.5 fs	0.005	< 0.040	Vertex detector alignment
Β(τ→evv) [%]	Selection of t ⁺ t [*] ,	17.82 ± 0.05	0.0001 (No estimate; possibly 0.003	Efficiency, bkg,
Β(τ→μνν) [%]	state	17.39 ± 0.05			Particle ID

$$\begin{array}{c|c} \Delta(g_{\tau}/g_{e\mu}) \text{ contributions} \\ \hline \\ input & \Delta input & \Delta(g_{\tau}/g_{e\mu}) \\ \hline \\ \mathcal{B}'_{\tau \to e} & 0.178\% & 0.089\% \\ \\ \tau_{\tau} & 0.172\% & 0.086\% \\ \\ m_{\tau} & 0.007\% & 0.017\% \\ \hline \\ \hline \\ total & 0.125\% \end{array}$$

best measurements

$$\begin{split} \triangleright \ & \mathcal{B}'(\tau \to e\bar{\nu}\nu) = \text{average of} \left\{ \begin{array}{l} \mathcal{B}(\tau \to e\bar{\nu}\nu) \\ \mathcal{B}(\tau \to \mu\bar{\nu}\nu) \cdot f_{\tau e}/f_{\tau \mu} \\ \mathcal{B}(\tau \to e\bar{\nu}\nu) \tau_{\mu} \end{array} \right. \\ \left. \geq \frac{\mathcal{B}'(\tau \to e\bar{\nu}\nu)\tau_{\mu}}{\mathcal{B}(\mu \to e\bar{\nu}\nu)\tau_{\tau}} = \frac{g_{\tau}^2}{g_{e\mu}^2} \frac{m_{\tau}^5 f_{\tau e} R_{\gamma}^{\tau} R_W^{\tau}}{m_{\mu}^5 f_{\mu e} R_{\gamma}^{\mu} R_W^{\mu}} \\ \left. \left. \left(\frac{g_{\tau}}{g_{e\mu}} \right)^2 = \frac{\mathcal{B}'(\tau \to e\bar{\nu}\nu)}{\mathcal{B}(\mu \to e\bar{\nu}\nu)} \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^5}{m_{\tau}^5} \frac{f_{\mu e} R_{\gamma}^{\mu} R_W^{\mu}}{f_{\tau e} R_{\gamma}^{\tau} R_W^{\tau}} \\ \end{split}$$

CEPC? Systematic uncertainties under control?

 $\mathcal{B}'_{ au
ightarrow e}$ ALEPH Belle $au_{ au}$ **BES III** m_{τ}

17.90

Charged Lepton Flavor violation?

Radiative modes affected by ISR photon background:

Expected sensitivity too optimistic?

CEPC: $\tau \rightarrow \mu \gamma$ 10⁻⁹ ? $\tau \rightarrow \mu \mu \mu$ 10⁻¹⁰?

Call a white paper in last December 2018 By Prof. Yi-Fang Wang

Flavor Physics at CEPC

IHEP-Physics-Report-CEPC-2018-12-11-v0.0

Working Group and Conveners

Chapter One: Introduction				
Conveners: Marek Karliner, Luciano Maiani,	Ν/Δ			
Jonathan Rosner, Abner Soffer, Lian-Tao Wang	N/A			
Chapter Two: Leptonic and semileptonic b-hadron decays	N/ I			
Conveners: Sebastien Descotes-Genon , Jeorme Charles,	Very preliminary version			
Abner Soffer, Florian Bernlochner, Bob Kowalewski				
Chapter Three: b-hadronic decays and CP violation	N1 / A			
Conveners: I.I. Bigi, Chao-Qiang Geng, Abner Soffer,	N/A			
Yue-Hong Xie				
Chapter Four: Rare and forbidden b-hadron decays				
Conveners: Wolfgang Altmannshofer, Soeren A. Prell,	Very preliminary version			
Emmanuel Stamou				
Chapter Five: Charm physics				
Conveners: Chun-Hui Chen, Hai-Yang Cheng,	Well-done preliminary version			
Marek Karliner, Jonathan Rosner				
Chapter Six: Exotic hadron and Spectroscopy with heavy flavors				
Conveners: Marek Karliner, Luciano Maiani,	N/A			
Jonathan Rosner, Wei Wang				
Chapter Seven: τ Physics				
Conveners: Emilie Passemar, Emmanuel Stamou,	Drolinsinon worsion			
Lorenzo Calibbi	Preliminary version			
Chapter Eight: Flavor physics in Z decays				
Conveners: Wolfgang Altmannshofer, Lorenzo Calibbi	Very preliminary version			
Chapter Nine: Two photon and ISR physics with heavy flavors				
Conveners: Igor Boyko, Vladimir Bytiev,	Wall dono proliminary			
Alexey Zhemchugov, Lian-Tao Wang	well-dolle prelititiary			
Chapter Ten: Summary and Conclusion				
Conveners: Lorenzo Calibbi, Hai-Bo Li, Manqi Ruan,				
Abner Soffer, Jian-Chun Wang	N/A			

Summary

• Understand the experimental precision with $10^{12} Z$:

rare decays of tau, *c*- and *b*-hadrons;

CP violation;

precision tau physics;

• Examine the relevance of a dedicated PID ($\pi / K / p$ separation) detector.

62

Back up slides

	Experimental discoveries	Discoverers or collaborations
1897	electron	J. J. Thomson [1]
1917	proton (up and down quarks)	E. Rutherford [22]
1932	neutron (up and down quarks)	J. Chadwick [23]
1933	positron	C. D. Anderson [24]
1936	muon	C. D. Anderson, S. H. Neddermeyer [25]
1947	pion (up and down quarks)	C. M. G. Lattes, et al. [26]
1947	Kaon (strange quark)	G. D. Rochester, C.C. Butler [27]
1956	electron antineutrino	C. L. Cowan, et al. [28]
1957	Parity violation	C. S. Wu, et al. [29]; R. L. Garwin, et al. [30]
1962	muon neutrino	G. Danby, et al. [31]
1964	CP violation in s-quark decays	J. H. Christenson, et al. [32]
1974	charmonium (charm quark)	J. J. Aubert, et al. [33]; J. E. Augustin, et al. [34]
1975	tau	M. L. Perl, et al. [35]
1977	bottomonium (bottom quark)	S. W. Herb, et al. [36]
1983	weak W [±] bosons	G. Arnison, et al. [37]
1983	weak Z ⁰ boson	G. Arnison, et al. [38]
1995	top quark	F. Abe, et al. [39]; S. Abachi, et al. [40]
2000	tau neutrino	K. Kodama, et al. [41]
2001	CP violation in <i>b</i> -quark decays	B. Aubert, et al. [42]; K. Abe, et al. [43]
2012	Higgs boson H ⁰	G. Aad, et al. [44]; S. Chatrchyan, et al. [45]
2019	CP violation in c-quark decays	R. Aaij et al. [46]

Some important milestones associated with the experimental discoveries of lepton or quark flavors and the effects of parity and CP violation. The discoveries of W^{\pm} , Z^{0} and H^{0} bosons are also listed here as a reference.

	Neutrino sources and oscillations	Discoverers or collaborations
1968	Solar neutrinos $(v_e \rightarrow v_e)$	R. Davis, et al. [9]
1987	Supernova antineutrinos $(\overline{\nu}_{e})$	K. Hirata, et al. [78]; R. M. Bionta, et al. [79]
1998	Atmospheric neutrinos $(v_{\mu} \rightarrow v_{\mu})$	Y. Fukuda, et al. [13]
2001	Solar neutrinos $(v_{\rho} \rightarrow v_{\rho}, v_{\mu}, v_{\tau})$	Q. R. Ahmad, et al. [10,12]; S. Fukuda, et al. [11]
2002	Reactor antineutrinos $(\overline{v}_{\rho} \rightarrow \overline{v}_{\rho})$	K. Eguchi, et al. [14]
2002	Accelerator neutrinos $(v_{\mu} \rightarrow v_{\mu})$	M. H. Ahn, et al. [16]
2011	Accelerator neutrinos $(v_{\mu} \rightarrow v_{e})$	K. Abe, et al. [17,18]
2012	Reactor antineutrinos $(\overline{\nu}_e \rightarrow \overline{\nu}_e)$	F. P. An, et al. [15]

Some key milestones associated with the experimental discoveries of neutrino or antineutrino oscillations.

Flavour at the Z: the lepton Physics Case

Flavor at the *Z*: the lepton physics

A high-luminosity *Z* factory with 10^{12} *Z* allows us to search for new physics in the leptonic Z decays:

$$e^+e^- \to Z \to \nu N$$
$$N \to l^+l'^-\nu, q\bar{q}'l, q\bar{q}\nu$$

Blondel, Graverinib, Serrab, Shaposhnikov arXiv:1411.5230

FIG. 2. Typical decays of a neutral heavy lepton via (a) charged current and (b) neutral current. Here the lepton l_i denotes e, μ , or τ .

LNV processes to identify Majorana neutrinos Sensitivity: 10⁻¹¹ at CEPC.

 $l^+l^+h^-h^- + c.c.$

Z decays: cLFV

Lepton Flavor-violating Z decays in the SM with lepton mixing are typically:

 $B(Z \to \mu e) \sim B(Z \to \tau e) \sim 10^{-54} \ B(Z \to \tau \mu) \sim 10^{-60}$

- Any observation of such a decay would be an indisputable evidence for New Physics.
- Current limits at the level of ~10⁻⁶ (from LEP and recently ATLAS, *e.g.* DELPHI, Z. Phys. C73 (1997) 243 ATLAS, CERN-PH-EP-2014-195 (2014))
- The CEPC high luminosity Z factory would allow to gain up to five orders of magnitude ...

A. Abada et al. arXiv:1412.6322

S. Davidson et al. JHEP 1209 (2012) 092

Kinematics of τ decays: heavy neutrinos

LNV processes at Z peak

• Very heavy neutrinos $\rightarrow \Sigma_k V_{lk} V_{l'k} / m_k$,

Resonant neutrinos $\rightarrow \Sigma_k V_{lk} V_{l'k} m_k / \Gamma_N$

Atre, Han, Pascolie and Zhang JHEP 0905,030(2009)

Hai-Bo Li@IHEP

 M_2^+

 M_2^-

 M_1^-

LNV processes at Z peak

LNV signals of Majorana neutrinos:	CEPC	Belle-II
$B^+/D^+ \to h^- l^+ l^+ (h = hadron)$	10 ⁻¹⁰	10 ⁻¹⁰
$B^0/D^0 \to h_1^- h_2^- l^+ l^+ (h = hadron)$	10 ⁻¹⁰	10 ⁻¹⁰
$Z^0 \to h_1^- h_2^- l^+ l^+$	10 ⁻¹¹	
$\tau^{\pm} \to l^{\mp} h_1^{\pm} h_2^{\pm}$	10 ⁻¹⁰	10 ⁻⁹
$\tau^{\pm} \to \nu_{\tau} l^{\pm} l^{\pm} h_1^{\mp}$	10 ⁻¹⁰	10 ⁻⁹

• Very light neutrinos $\rightarrow \langle m_{II'} \rangle = \Sigma_i U_{iI} U_{I'i} m_i$,

• Very heavy neutrinos $\rightarrow \Sigma_k V_{lk} V_{l'k} / m_k$,

• Resonant neutrinos $\rightarrow \Sigma_k V_{lk} V_{l'k} m_k / \Gamma_N$

LNV meson decays: current limits

$\nu + + +$	6 4 10-10			
$K' \rightarrow \pi e'e'$	6.4 ×10			
$K^+ \to \pi^- \mu^+ \mu^+$	3.0×10^{-9}	PDG		
$K^+ \rightarrow \pi^- e^+ \mu^+$	5.0×10^{-10}			
$D^+ \rightarrow \pi^- e^+ e^+$	1.9×10^{-6}	$D_s^+ \rightarrow \pi^- e^+ e^+$	4.1×10^{-6}	
$D^+ \rightarrow \pi^- \mu^+ \mu^+$	2.0×10^{-6}	$D_s^+ \rightarrow \pi^- \mu^+ \mu^+$	14×10^{-6}	
$D^+ \rightarrow \pi^- e^+ \mu^+$	2.0×10^{-6}	$D_s^+ \rightarrow \pi^- e^+ \mu^+$	8.4×10^{-6}	BABAR1
$D^+ \rightarrow K^- e^+ e^+$	0.9×10^{-6}	$D_s^+ \rightarrow K^- e^+ e^+$	5.2×10^{-6}	
$D^+ \rightarrow K^- \mu^+ \mu^+$	10×10^{-6}	$D_s^+ \to K^- \mu^+ \mu^+$	13×10^{-6}	
$D^+ \rightarrow K^- e^+ \mu^+$	1.9×10^{-6}	$D_s^+ \to K^- e^+ \mu^+$	6.1×10^{-6}	
$B^+ \to \pi^- e^+ e^+$	2.3×10^{-8} BABAR2	$B^+ \rightarrow D^- e^+ e^+$	2.6×10^{-6} Belle	
$B^+ \rightarrow \pi^- \mu^+ \mu^+$	10.7 $\times 10^{-8}$ BABAR2	$B^+ \rightarrow D^- \mu^+ \mu^+$	1.8×10^{-6} Belle	
	$4.0 \times 10^{-9} LHCb$		$6.9 imes 10^{-7}$ LHCb	
$B^+ \to \pi^- e^+ \mu^+$	1.3×10^{-6} BABAR2	$B^+ \rightarrow D^- e^+ \mu^+$	$1.1 imes 10^{-6}$ Belle	
$B^+ \rightarrow K^- e^+ e^+$	3.0×10^{-8} BABAR2	$B^+ \to D_s^- \mu^+ \mu^+$	$5.8 imes 10^{-7}$ LHCb	
$B^+ \rightarrow K^- \mu^+ \mu^+$	6.7 ×10 ⁻⁸ BABAR2	$B^+ \rightarrow D^{*-} \mu^+ \mu^+$	2.4×10^{-6} LHCb	
$B^+ \to K^- e^+ \mu^+$	2.0×10^{-6} BABAR2			

BABAR1: J. P. Lees et al, PRD 84, (2011) BABAR2: J. P. Lees et al, arXiv: 1202.3650 Belle: O. Seon et al, PRD 84 (2011) LHCb: R. Aaij et al, PRL 104 (2011) LHCb, PRL 112,131802 (2014)
LNV τ data: current limit

Belle: PLB 682, 355 (2010), (90 % C.L.).

LNV meson decays: current limits

$\nu + + +$	6 4 10-10			
$K' \rightarrow \pi e'e'$	6.4 ×10			
$K^+ \to \pi^- \mu^+ \mu^+$	3.0×10^{-9}	PDG		
$K^+ \rightarrow \pi^- e^+ \mu^+$	5.0×10^{-10}			
$D^+ \rightarrow \pi^- e^+ e^+$	1.9×10^{-6}	$D_s^+ \rightarrow \pi^- e^+ e^+$	4.1×10^{-6}	
$D^+ \rightarrow \pi^- \mu^+ \mu^+$	2.0×10^{-6}	$D_s^+ \rightarrow \pi^- \mu^+ \mu^+$	14×10^{-6}	
$D^+ \rightarrow \pi^- e^+ \mu^+$	2.0×10^{-6}	$D_s^+ \rightarrow \pi^- e^+ \mu^+$	8.4×10^{-6}	BABAR1
$D^+ \rightarrow K^- e^+ e^+$	0.9×10^{-6}	$D_s^+ \rightarrow K^- e^+ e^+$	5.2×10^{-6}	
$D^+ \rightarrow K^- \mu^+ \mu^+$	10×10^{-6}	$D_s^+ \to K^- \mu^+ \mu^+$	13×10^{-6}	
$D^+ \rightarrow K^- e^+ \mu^+$	1.9×10^{-6}	$D_s^+ \to K^- e^+ \mu^+$	6.1×10^{-6}	
$B^+ \to \pi^- e^+ e^+$	2.3×10^{-8} BABAR2	$B^+ \rightarrow D^- e^+ e^+$	2.6×10^{-6} Belle	
$B^+ \rightarrow \pi^- \mu^+ \mu^+$	10.7 $\times 10^{-8}$ BABAR2	$B^+ \rightarrow D^- \mu^+ \mu^+$	1.8×10^{-6} Belle	
	$4.0 \times 10^{-9} LHCb$		$6.9 imes 10^{-7}$ LHCb	
$B^+ \to \pi^- e^+ \mu^+$	1.3×10^{-6} BABAR2	$B^+ \rightarrow D^- e^+ \mu^+$	1.1×10^{-6} Belle	
$B^+ \rightarrow K^- e^+ e^+$	3.0×10^{-8} BABAR2	$B^+ \to D_s^- \mu^+ \mu^+$	$5.8 imes 10^{-7}$ LHCb	
$B^+ \rightarrow K^- \mu^+ \mu^+$	6.7 ×10 ⁻⁸ BABAR2	$B^+ \rightarrow D^{*-} \mu^+ \mu^+$	2.4×10^{-6} LHCb	
$B^+ \to K^- e^+ \mu^+$	2.0×10^{-6} BABAR2			

BABAR1: J. P. Lees et al, PRD 84, (2011) BABAR2: J. P. Lees et al, arXiv: 1202.3650 Belle: O. Seon et al, PRD 84 (2011) LHCb: R. Aaij et al, PRL 104 (2011) LHCb, PRL 112,131802 (2014)

LNV τ data: current limit

Belle: PLB 682, 355 (2010), (90 % C.L.).

tau lepton at Z peak

Advantage of tau experiment at Z peak:

- Large production cross-section (1.5 nb)
- Strong boost, decay length: 2 mm
- Back-to-back event topology, 80% efficiency
- Clean background
- Good lepton and $K_L ID$

Disadvantage: K/piID is challenge

Tau lepton at Belle-II

- Low cross section and back-to-back
- Relatively short decay length : 0.25 mm
- High background from qqbar and B decays
- Good pi/K PID and Ks reconstruction
- Limited K_L reconstruction
- Low efficiency for high multiplicity

tau lepton reconstruction at Belle

 $Ecm{\sim}10.6~GeV$

Tau 对之间任意粒子的夹角均大于90°。

CLEO

Phys.Rev.Lett.75:3809-3813,1995

Sample	N _d	f_{b}^{τ} (%)	$f_{b}^{q\bar{q}}$ (%)	e (%)
e-3h	18815	7.5 ± 0.2	0.2 ± 0.2	20.0 ± 0.4
μ -3h	13985	12.8 ± 0.2	0.3 ± 0.3	14.4 ± 0.3
3h-3h	4877	16.8 ± 1.3	6.5 ± 1.3	14.8 ± 0.4
$e-3h\pi^0$	3227	4.5 ± 0.4	0.3 ± 0.3	7.9 ± 0.3
μ -3 $h\pi^0$	2335	10.3 ± 0.4	0.7 ± 0.7	5.6 ± 0.2
$3h-3h\pi^0$	1681	13.6 ± 0.6	12.3 ± 1.4	5.4 ± 0.6

tau lepton reconstruction @ Z peak

tau lepton reconstruction at Z-peak

Physics processes	Efficiency (%)	Contamination (%)
$Z^0 \rightarrow \tau^+ \tau^-$	78.84 ± 0.13	
Bhabha		$0.15~\pm~0.03$
$Z^0 \rightarrow \mu^+ \mu^-$	十十子子	0.07 ± 0.02
$\gamma\gamma \rightarrow e^+e^-$	云大时双	0.07 \pm 0.02
$\gamma\gamma \rightarrow \mu^+\mu^-$	家早日日	0.08 ± 0.02
four-fermion	中心区	0.14 ± 0.02
cosmic rays	何诰成的	0.02 ± 0.01
$Z^0 \to q\overline{q}$		0.31 ± 0.09

List of tau physics @ Z peak

- High precision tau decays rates (uncertainty: 10⁻⁵)
- Vus, tau life time, tau coupling, α QCD etc.
- Rare: cLFV, LNV ...
- CPV in tau production and decay (10⁻⁴)
- Anomalous magnetic moment of the tau: ~10⁻⁶ -10⁻⁷
- Electric Dipole Moment of the tau: $Re(d_{tau}) \sim 10^{-19} e cm$
- Weak Dipole Moments of the tau (Z and W coupling)

cLFV in tau decays

6×10^{10} τ pairs on Z pole at CEPC \rightarrow reach at 10^{-9} - 10^{-10}

Heavy quarks @ Z peak

b-hadron productions at CEPC and Belle-II

<i>b</i> -hadron species	Fraction	Number	Fraction	Number
_	in decays of	of <i>b</i> -hadron	in $\Upsilon(4S)/(5S)$ decays	of b -hadron
	$Z^0 ightarrow b ar{b}$	at Z^0 peak		at $\Upsilon(4S)/(5S)$
B^0	0.404 ± 0.009	22.0×10^{10}	$0.486 \pm 0.006 \ (\Upsilon(4S))$	$4.9 imes 10^{10}$
B^+	0.404 ± 0.009	$22.0 imes 10^{10}$	$0.514 \pm 0.006 (\Upsilon(4S))$	$5.1 imes 10^{10}$
B_s	0.103 ± 0.009	$5.4 imes 10^{10}$	$0.201 \pm 0.030 (\Upsilon(5S))$	$0.6 imes10^{10}$
<i>b</i> baryons	0.089 ± 0.015	4.8×10^{10}	_	_

- The production rate of Bc meson is small, 10⁶ 10⁷ Bc mesons are expected from NRQCD
- In the first class of Λ_b decays one gets $p\pi^-$, $p\pi^-\pi^0$, pK^-K^0 , ΛK^- , $p\pi^-\pi^+\pi^-$, $p\pi^-K^+K^-$, $p\pi^-\bar{K}^0K^0$, etc.

In the second class one probes pK^- , $pK^-\pi^0$, $pK_S\pi^-$, ΛK^+K^- etc.

- Ξ_b^- decays lead to $\Lambda^0 \pi^-$, $\Lambda^0 \pi^- \pi^0$ etc. and $\Lambda^0 K^-$, $\Lambda^0 K^- \pi^0$, $\Lambda^0 \bar{K}^0 \pi^-$ etc. For Ξ_b^0 decays one probes FS about $\Sigma^+ \pi^-$, $\Lambda^0 \pi^+ \pi^-$ etc. and $\Sigma^+ K^-$, $\Lambda^0 \pi^+ K^-$ etc.
- For obvious reasons we list only first class of Ω_b^- , namely $\Xi^0 \pi^-$, $\Omega^- K^0$.

Heavy quarks @ Z peak

Likely unique to CEPC:

- 1) Any leptonic or semileptonic decay mode involving *Bs*, *Bc* or *b*-baryon, including electrons and taus.
- 2) Any decay mode involving *Bs*, *Bc* or *b*-baryon with neutrals.
- 3) Multibody (means 4 and more) hadronic *b*-hadron decays.

$$B_{s} \rightarrow \phi \tau \tau \qquad B_{s} \rightarrow \eta \mu \mu$$

$$B_{s} \rightarrow \eta' \tau \tau \qquad B_{s} \rightarrow \eta' \mu \mu$$

$$B^{0} \rightarrow K^{(*)} \tau \tau \qquad B^{0} \rightarrow \pi^{0} \mu \mu$$

$$B^{0} \rightarrow \pi^{0} \tau \tau \qquad B^{0} \rightarrow \eta \mu \mu$$

$$B^{+} \rightarrow K^{+(*)} \tau \tau \qquad B \rightarrow h \nu \bar{\nu}$$

$B/Bs \rightarrow (K^*)$ tau tau

Reconstruction Methods

Inclusive

Talk by Simon Wehle

Inclusive decays offer very clean • Ζ $\sim 1\%$ theoretical observables Xs Important benchmarks: b ٠ a Kaon identification B taggir K_S finding • auPossible problems • difficult to estimate spectator

Flavors at the Z: EW penguins

LHCb update and CEPC will improve it by a factor of 3-4 after 2028. Theoretical uncertainty is in the same level.

At CEPC we can search for:

Hai-Bo Li@IHEP

Flavor at the Z: EW penguins

Flavors at the Z: EW & Higgs penguins

LHCb and CMS, arXiv:1411.4413

$$B(B^0 \to \mu\mu) = (3.94^{+1.58+0.31}_{-1.41-0.24}) \times 10^{-10} (3.2\sigma)$$
$$B(B_s \to \mu\mu) = (2.79^{+0.66+0.26}_{-0.60-0.19}) \times 10^{-10} (6.2\sigma)$$

$$B(B^{0} \to \mu\mu) = (1.06 \pm 0.09) \times 10^{-10}$$

$$B(B_{s} \to \mu\mu) = (3.66 \pm 0.23) \times 10^{-10}$$

Hai-Bo Li@IHEP
Theory: Bobeth et al.
PRL 112(2014)101801

88

Probe New physics in Z four-body decays Example: $Z \rightarrow b\bar{b}l^+l^-$, $l^+l^-l'^+l'^-$

arXiv:1805.05791

CPV in Z decays

