
Österreichische Akademie der Wissenschaften HEPHY-PUB-863/08.
INSTITUT FÜR HOCHENERGIEPHYSIK Version 2.0 – 5 June 2008

LiC Detector Toy 2.0
Vienna Fast Simulation Tool for Charged Tracks

User’s Guide

Meinhard Regler, Manfred Valentan1 and Rudolf Frühwirth

Institute of High Energy Physics, Austrian Academy of Sciences
Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, EU

Abstract

This guide describes the “LiC Detector Toy” (LDT) software tool which has been developed
for detector design studies, aiming at investigating the resolution of reconstructed track
parameters for the purpose of comparing and optimizing detector set-ups. It consists of
a simplified simulation of the detector measurements, based on a helix track model and
taking into account multiple scattering, followed by full single track reconstruction using
the Kalman filter. The software runs under MatLab and Octave, with an integrated GUI
available under MatLab, and may be installed on a desktop or laptop PC. It can easily
be used as a black-box tool by non-experts, but can also be adapted to meet individual
needs.

1Contact: < valentan@hephy.oeaw.ac.at >

Contents

1 Introduction 3

2 Getting started 4

3 Setting up the detector model 6
3.1 Input of barrel region, magnetic field and vertex position 8
3.2 Example barrel input sheet: Silicon Inner Tracker 9

3.2.1 Magnetic field and beam spot . 11
3.3 Input of forward region . 11
3.4 Example forward input sheet . 12

4 Input of simulation parameters 14
4.1 General parameters: . 14
4.2 Start parameters . 14
4.3 Control flags . 16

5 Running a simulation 17

6 Description of the output 20
6.1 The log file . 21
6.2 Histograms of pull quantities and standardized residuals 23
6.3 Histograms of the residuals with respect to the true track parameters . . . 23
6.4 Impact parameters . 25
6.5 RAVE file . 25
6.6 JAS3 file . 26

7 Calculating and displaying curves 27
7.1 Curves with different start parameters . 27
7.2 Curves with different detector setups . 30

8 Additional features 36
8.1 Some key variables . 36
8.2 The results file . 37

Acknowledgements 39

References 39

Appendix: The global coordinate system 40

2

1 Introduction

This simple but powerful software tool for detector design, modification and upgrade stud-
ies aims at investigating the resolution of reconstructed track parameters at the inner side
of the beam tube for comparing and optimizing the track sensitive devices and the mate-
rial budgets of various detector set-ups. This is achieved by a simplified simulation of the
set-up yielding the measured coordinates, followed by full single track reconstruction.

The detector model corresponds to a collider experiment with a solenoid magnet, and is
rotational symmetric w.r.t. the beam axis; the surfaces are either cylinders (barrel region)
or planes (forward and rear regions). The magnetic field is homogeneous and parallel to
the beam axis, thus implying a helix track model (radius RH); S-shaped tracks are not
foreseen. All material causing multiple scattering is assumed to be concentrated within
thin layers; it can either be averaged over a surface, or can be modeled individually.

The simulation generates a charged track from a primary vertex, performs helix tracking
in a homogeneous magnetic field with breakpoints due to multiple scattering, and simu-
lates detector measurements including systematic or stochastic inefficiencies and uniform
or Gaussian observation errors, but no other degradation of data. Supported are Si strip
detectors (single or double sided, with any stereo angle), pixel detectors, and a time projec-
tion chamber (TPC). The simulated measurements are then used to reconstruct the track
by fitting its five parameters and calculating their corresponding 5 × 5 covariance matrix
at a given reference cylinder, e.g. the inner surface of the beam tube (optionally being
converted to a 6-dimensional Cartesian representation, see section 6). The definition of
the track parameters can be found in the Appendix. The method used is a Kalman fil-
ter [1, 2] with linear approximation to the track model, the expansion point being defined
by the simulated track parameters at the outer surface of the beam tube; process noise
is calculated from the material budget as seen by the reference track. Sensitive tests of
goodness of the fits (χ2 distributions and pull quantities) are implemented. The tool may
optionally generate vertices with any desired number of tracks, thus being able to deliver
input for multiprong track bundling and secondary vertex separation. And it can supply
input for pattern recognition studies, for the development of alignment strategies, or for
trigger simulation studies.

The algorithms used in the tool are on a solid mathematical basis. The software was
originally written in MatLab R©, a high-level matrix algebra language and IDE [3]; usage
is supported by a graphic user interface (GUI). It has furthermore been adapted to run
command line based under Octave, where the GUI is not available [4]. The tool is
deliberately kept simple and can without effort be adapted to meet individual needs. Its
main purpose, however, is to supply a tool for non-experts, without any knowledge of
algorithmic details. Once the detector description (“input sheet”) – certainly the most
demanding part – has been set up, individual detector layers can easily be added, removed
or modified, the result of which can quickly be evaluated after a short running time.

The tool was released at the VCI 2007 [5], and has so far been used for track resolution
studies of detectors at the ILC [6] and the BELLE detector at KEK [7].

3

2 Getting started

The “LDT” software runs under MatLab , furthermore it has been adopted to run under
GNU Octave as well. Both are high level languages, which are at present supported on
the following platforms: Linux 32/64, Solaris 64, MacOSX PPC/ICD and Windows 32/64.
To run the program, MatLab version 7 including the graphics toolbox or GNU Octave
version 3.01 is necessary; lower versions may work but have not been tested.

If your institution has no MatLab campus licence, contact “The MathWorks” at
http://www.mathworks.com/.
GNU Octave is freely redistributable software and can be downloaded at [4] under the

terms of the GNU General Public Licence.

Getting started in MatLab : Start MatLab and open the main file LDT Matlab.m.
The program is started by running this file in the MatLab interpreter, i.e. opening the file
in the editor and clicking the run button, or simply by typing LDT Matlab in the MatLab
shell. Usually, MatLab ’s current directory (the main search path) will not be the one
where the LDT source files reside. Therefore, after starting the program, a window will
pop up asking you to change the current directory. Select Change MatLab current

directory and confirm. After the program has been started the main window appears
(see figure 1).

Figure 1: Main window

To end the program, click “Exit LDT” at the lower right corner of the main window.

Getting started in Octave : Start Octave and use the command cd (change di-
rectory) to navigate to the path where LDT’s files are stored. Then type LDT Octave to

4

start the program. The welcome screen is shown (see figure 2) and the main steering file
simulation parameters Octave.txt is opened in the default text editor (see figure 3).

Figure 2: Octave welcome screen

Figure 3: Octave main steering file

5

3 Setting up the detector model

The so called “input sheets” contain all input data the program needs for building the
detector model. They contain the geometry of the detector layers, their material budget,
the accuracy and the kind of the error distribution of the measurements and their efficiency.
In addition to that they contain information about passive scattering layers (e.g. the beam
tube and support structures) and their material budgets. There are separate input sheets
for the barrel and the forward region. They have to be stored in the directory /geom with
the extension .bgeom and .fgeom, respectively. There is no difference between the input
sheets used by the MatLab version and by the Octave version of LDT.

There are three predefined input sheets, that should not be changed, with the names:
empty.bgeom, empty.fgeom and beamtube-only.bgeom. The input sheets empty.bgeom

and empty.fgeom serve as master input sheets for setting up a new detector setup. They
can be edited, but have to be stored under a different filename afterwards. The input sheet
beamtube-only.bgeom is used for detector setups containing only forward layers. Since
internally the innermost cylinder layer is used as reference surface for the track parameters,
at least one cylinder layer has to be considered. This input sheet can be edited to change
the radius of this reference layer. Detector setups containing only barrel layers can make
use of the forward input sheet empty.fgeom.

Handling input sheets in MatLab : The input sheets can be selected using the main
window of the program (see figure 1). On the left side of the main window one finds the
section “Detector geometry”, divided into two parts, one for the barrel geometry and one
for the forward geometry. To select an input sheet, click on the corresponding pull down
menu and choose “Select barrel geometry” (“Select forward geometry”). A file dialog will
appear, asking you to choose a barrel (forward) input sheet. The name of the selected
input sheet will then be displayed beyond the pull down menu.

You can have the program draw a sketch of the selected geometry. By clicking the button
“2D detector display”, MatLab opens a figure window showing a 2D sketch of the chosen
arrangement, including (by default) the names of the layers and illustrating the chosen
start parameter range in ϑ by red lines. By clicking the button “3D detector display”
another figure window appears containing a 3D plot of the setup (see figures 4 and 5,
respectively). Note, that usually not all layers of the TPC are shown, since there are too
many.

To modify an existing geometry, select “Modify barrel (forward) geometry” in the cor-
responding pull down menu. A file dialog will appear and ask you to choose a barrel
(forward) file. MatLab opens the input sheet in the default text editor. Now you can
easily change some values of the setup, as will be shown later. Don’t forget to save your
changes before running a simulation run!

To open a new input sheet, select “New barrel (forward) geometry” in the corresponding

6

Figure 4: Detector setup in 2D Figure 5: Detector setup in 3D

pull down menu. MatLab opens the predefined input sheet empty.bgeom (empty.fgeom)
in the text editor. These input sheets only contain explaining text and may be filled in as
desired. Please don’t forget to save the file after editing it under a different filename!

The pull down menus contain two more items, “Add barrel (forward) geometry to list”,
and “Remove barrel (forward) geometry from list”. They will be explained in section 7.2.

Handling input sheets in Octave : The input sheets can be selected using the main
steering file of the program (see figure 3). Enter the filename of the desired barrel input
sheet in the first line of the main steering file. The filename of the desired forward input
sheet is entered in the second line, both behind the semicolon.

By typing LDT display2D in the Octave command line, Octave opens a figure window
showing a 2D sketch of the chosen arrangement, including (by default) the names of the
layers and illustrating the chosen start parameter range in ϑ by red lines (see figure 4).
The 3D sketch of the detector setup is not available in Octave . Note, that usually not
all layers of the TPC are shown, since there are too many.

To modify an existing geometry, type edit followed by the name of the desired input
sheet in the Octave shell, including the file’s extension (.bgeom or .fgeom, respectively).
Octave opens the input sheet in the default text editor. Now you can easily change some
values of the setup, as will be shown later. Don’t forget to save your changes before running
a simulation run!

To open a new input sheet, type edit empty.bgeom (edit empty.fgeom) in the Octave
shell. Octave opens the predefined input sheet empty.bgeom (empty.fgeom) in the text

7

editor. These input sheets only contain explaining text and may be filled in as desired.
Please don’t forget to save the file after editing it under a different filename!

3.1 Input of barrel region, magnetic field and vertex position

As the entire detector is assumed to have cylindrical symmetry, the detector layers in the
barrel region are cylinder surfaces, defined by their radii and their extensions in the z-
direction. Each detector layer is a priori assumed to be a double-sided strip layer: the
first coordinate measured is the azimuthal arc RΦ, the second one is a helix with arbitrary
stereo angle α; for α = π/2 it measures z. Since inefficiencies are included, a single-sided
layer can be modeled by giving one coordinate zero efficiency. Setting the efficiency of the
second coordinate to −1 forces both coordinates to fire at the same time (strict correlation).
Pixel layers can be modeled by giving the coordinates the corresponding pixel distances,
the stereo angle α = π/2, and strict correlation of the efficiency.

A passive layer is modeled by assigning one coordinate the efficiency zero and by requiring
the efficiency of the second coordinate to be strictly correlated. Such a layer doesn’t yield
measurements at all. At least one passive layer should be included, usually the beam
tube. Note that the innermost cylinder layer is used as a reference surface, so that after
the reconstruction the fitted parameters are defined on this surface. Also the residuals
of the fitted track parameters w.r.t. to the true ones are computed on this surface. This
innermost cylinder layer is always assumed to be a passive one. Of course one can define
a “virtual” layer (passive, zero thickness) as innermost layer to have the parameters be
defined on this surface rather than on the beam tube (for example as virtual measurements
for a subsequent vertex fit).

The barrel input sheet is divided into four input sections called Vertex Detector (VTX),
Silicon Inner Tracker (SIT), Time Projection Chamber (TPC), and Silicon External Tracker
(SET). Note that the layers in the TPC input section have special features. In fact the
entire detector can be built using only a single section, e.g the VTX section. The different
input sections are prepared because usually it is more convenient to group certain detector
layers with similar properties.

In each one of the input sections one can define any number of detector layers and
passive layers together with their corresponding geometry and further properties. The
input sections VTX, SIT and SET offer the same features (see example below), the only
difference being the colour in the detector display.
The input section TPC can be used to define layers with special behaviour. The resolution
of TPC measurements may depend on z in order to take into account diffusion effects in
the gas:

σRΦ =

√
σ2
RΦ,0 + σ2

RΦ,1 · sin(β) + C2
RΦ · sin(ϑ) · 6mm

h[mm]
·∆z[m],

8

σz =
√
σ2
z,0 + C2

z ·∆z[m],

where ∆z is the drift distance in [m], σRΦ,0 is the lateral resolution at the endplate in [µm],
σz,0 is the longitudinal resolution in [µm] due to drift time, CRΦ and Cz are respectively the
lateral and longitudinal charge spreadings due to diffusion in [µm/

√
m]. σRΦ,1 takes into

account the change of resolution in dependence on the angle β, and h =
RTPC,max−RTPC,min

npadrows

is the padrow pitch.
Note that this does not imply a particular technology as the diffusion can easily be sup-
pressed by setting CRΦ and Cz to zero. Currently only Gaussian errors are accepted in the
TPC input section.

In the following subsection a part of an example barrel input sheet is shown and explained.

3.2 Example barrel input sheet: Silicon Inner Tracker

The following input lines define two asymmetric passive layers forming support frames, two
detector layers (double sided strip layers) and the inner wall of the TPC (passive layer).
In the zoomed display (figure 6) passive layers are displayed in black and active layers of
the SIT input section are light blue. The dark blue layers are defined in the VTX section
and the green layers are defined in the TPC section (not all layers of the TPC section are
shown in the zoom).

Figure 6: Detector display (zoomed).

9

22 Silicon Inner Tracker (SIT)

23

24 Number of layers: 5

25 Description (optional): |support rings|-inner tracker-|TPC inner wall|

26 Names of the layers (opt.): XSR1, XSR2, SIT1, SIT2, XTPCW

27 Radii [mm]: 90, 90, 160, 290, 340

28 Upper limit in z [mm]: 110, -90, 300, 550, 2160

29 Lower limit in z [mm]: 90, -110, -300, -550, -2160

30 Efficiency RPhi: 0, 0, 0.95, 0.95, 0

31 Efficiency 2nd layer (eg. z):-1, -1, 0.95, 0.95, -1

32 Stereo angle alpha [Rad]: 10*pi/180

33 Thickness [rad. lengths]: 0.07, 0.07, 0.0175, 0.0175, 0.14

34 error distribution: 1

35 0 normal-sigma(RPhi) [1e-6m]:

36 sigma(z) [1e-6m]:

37 1 uniform-d(RPhi) [1e-6m]: 50

38 d(z) [1e-6m]: 50

Line 24: Five layers are defined in this input section.

Line 25: This line is reserved for an optional verbal description of the layers.

Line 26: Here one can define specific names for the layers to identify them in the pro-
gram. Can be left blank, if done so, the program uses default names, in this
case SIT-1 to SIT-5.

Line 27: The radii of the layers. Radii can be equal. If there are only two values,
the space between is filled with a number of equidistant layers equal to the
number of layers put in above. The radii do not have to be sorted. Internally
the program sorts the radii ancending and associates the rest of the values
(such as efficiencies, strip distances...) in the same way.

Line 28: Upper limit of the layers in z-direction. A single value is valid for each layer.
If there are only two values, the lengths of the layers are calculated such that
the ends of the layers all are on the surface of the cone defined by the lower
and upper radius and length.

Line 29: Lower limit in z-direction. Same features as before. Layers can be asymmetric
with respect to z = 0. The first two layers of this example are asymmetric
ones.

Line 30: Efficiency of the first coordinate measured, RΦ. Set to zero to model a single
or a passive layer.

Line 31: Efficiency of the second coordinate. A value of -1 means that the two coordi-
nates are either both present or both absent (strict correlation). This feature
is used to model pixels and passive layers. The first, the second and the last

10

layer of this example are passive ones (two support frames, and the TPC inner
wall).

Line 32: The stereo angle is defined as the angle between the strips measuring RΦ and
those measuring the second coordinate. Each (active) layer can have its own
angle; in this example the value is valid for all active layers.

Line 33: The thickness in radiation length. A single value is valid for all layers.

Line 34: 0=Gaussian, 1=uniformly (digitally) distributed measurement errors. Each
(active) layer can have its own distribution; in this example the value is valid
for all active layers.

Line 35,36: Standard deviation in the case of Gaussian distributed measurement errors.
If there are no layers with Gaussian errors, this line can be left blank. Each
(active) layer can have its own value, or one value can be defined which is valid
for all corresponding layers.

Line 37,38: Strip distances (or pad dimensions) in the case of uniform measurement errors.
Same features as for the standard deviations.

3.2.1 Magnetic field and beam spot

At the end of the barrel input sheet there are four more input lines. Here one defines the
solenoidal magnetic field in [T] and the vertex position in [mm]. For every event a vertex is
generated uniformly in the ranges entered in the three lower lines. All tracks of one event
start at the same vertex.

72 Magnetic field and beam spot

73

74 Solenoid magnetic field [T]: 5

75 Range in x [mm]: -0.0021 0.0021

76 Range in y [mm]: -1e-5 1e-5

77 Range in z [mm]: -1.04 1.04

3.3 Input of forward region

The forward and rear regions are both treated as “forward” due to reasons of similarity.
The detector layers are planar wheels defined by their z-position and their inner and outer
radius. Again each detector layer is a priori assumed to be a double strip layer measuring
two coordinates u and v. These coordinates are defined by two angles δ1 and δ2 dependent
on the intersection point. Keep in mind that the strip directions are perpendicular to the
directions of the coordinates (see figure 7). Passive and single layers can be modeled using
the inefficiency. Pixel detectors are built the same way as before.

The forward input sheet is divided into four input sections, two for the forward and
two for the rear region. They are called Forward Module 1 (FM1), Forward Module 2

11

Figure 7: Definition of forward coordinates u and v.

(FM2), Rear Module 1 (RM1) and Rear Module 2 (RM2). In each one of these input
sections one can define any number of detector layers and passive layers, together with
their corresponding geometry and further properties. All input sections of the forward and
rear region offer the same features (see example below), the only difference being the colour
in the detector display. In principle the entire forward and rear region of the detector can
be put into a single input section. But usually it’s more convenient to divide the setup into
groups of similar detector layers. In the following section a part of an example forward
input sheet is shown and explained.

3.4 Example forward input sheet

The following input lines define three detector layers (pixel layers). In the detector display
(figure 6) these layers are displayed in red on the right hand side. The yellow layers are
defined in the FM2 input section (they can’t be seen as the picture is zoomed). On the left
hand side one can see the same configuration for the rear region, defined in RM1 and RM2.
In this example the forward and rear region are symmetric, but they may be asymmetric.

12

04 Forward module 1

05

06 Number of layers: 3

07 Description (optional): |forward pixel discs|

08 Names of the layers (opt.): FPD1, FPD2, FPD3

09 z positions [mm]: 180, 300, 450

10 Inner radius [mm]: 40, 47.5, 57.5

11 Outer radius [mm]: 138, 140, 280

12 Efficiency u: 0.95

13 Efficiency v: -1

14 Angle 1st coord. (u) [Rad]: 0

15 Angle 2nd coord. (v) [Rad]: pi/2

16 Thickness [rad. lengths]: 0.01

17 error distribution: 1

18 0 normal-sigma(u) [1e-6m]:

19 sigma(v) [1e-6m]:

20 1 uniform-d(u) [1e-6m]: 50

21 d(v) [1e-6m]: 300

Line 06: Three layers are defined in this input section.

Line 07,08: Descriptions and specific names for the layers.

Line 09–11: These lines contain the geometry of the layers. They offer the same features
as the corresponding lines of the barrel input sheet.

Line 12,13: Efficiencies, also used for modeling passive, single and pixel layers.

Line 14,15: The angles defining the strip directions. In this example the directions are
perpendicular to each other, together with the strictly correlated efficiency
this models pixel discs.

Line 16: The thickness in radiation lengths.

Line 17: 0=Gaussian, 1=uniformly (digitally) distributed measurement errors.

Line 18,19: Standard deviation in the case of Gaussian errors. In this example, no layers
have this property, so the lines are left blank.

Line 20,21: Strip distances (or pad dimensions) in the case of uniform errors. The values
here are valid for all layers.

The input sections Rear Module 1 (RM1) and Rear Module 2 (RM2) offer a special feature.
If you enter the value −1 in the line ’Number of layers’, the program internally copies the
values of FM1 to RM1 and those of FM2 to RM2 while substituting the z positions by
their negative value. When setting up a symmetric detector w.r.t. the plane z = 0 (in the
forward/rear region), this feature can be used to skip filling in the input sections of the
rear region.

13

4 Input of simulation parameters

Input of simulation parameters in MatLab : By selecting “Set parameters” in the
main window’s section “Simulation” the window “Edit simulation parameters” is opened
(see figure 9). Here one puts in some general parameters, the start parameters, and sets
the flags to steer the simulation.

Figure 8: The section “Simulation” in the main window

Input of simulation parameters in Octave : The Octave version of LDT reads the
simulation parameters from the main steering file simulation parameters Octave.txt

(see figure 3), which is opened automatically when starting LDT in Octave . Except for
the first two lines, where the chosen input sheets are entered, it contains the same simulation
parameters and flags as the window ‘Edit simulation parameters’ of the MatLab version.
In fact, the MatLab version writes the simulation parameters entered in this very window
to a very similar text file, which is later read out when running a simulation.

4.1 General parameters:

• Mass of the particles: The unit is [GeV/c2]. If zero mass is entered, all particles are
treated relativistically in terms of multiple scattering (βP ≈ P).

• Number of events and tracks: The number of events to be simulated can be entered,
as well as the the number of tracks per event. Currently each event contains the
same number of tracks.

4.2 Start parameters

In the input section “Start parameter range” one can define ranges for the track’s momen-
tum and the track’s direction. These start parameters do not obey any physics, the tracks
of one event do not have any relation among each other, exept that they start at the same
vertex. Here you only define the phase space of possible start parameters.

14

Figure 9: Window ’Edit simulation parameters’

• Momentum: Here you can put in the minimum and maximum values of the track’s
momentum in [GeV/c].

• Polar angle theta: Put in here the minimum and maximum values of the polar
direction angle ϑ in [◦]. Values from 0 to 180 are accepted. But make sure that the
angle is not too small to hit any detector layer!
Attention: ϑ should not be mixed up with the dip angle λ = 90◦−ϑ!

• Azimuthal angle phi: Here one defines the minimum and maximum values of the
azimuthal direction angle ϕ in [◦]. Since up to now the whole detector is assumed to
have rotational symmetry, changes of this parameter won’t affect the results.

For every track, the momentum and the azimuth angle ϕ are generated randomly from
a uniform distribution between the given limits. In contrast, the polar angle ϑ is chosen
randomly from a uniform distribution of cos(ϑ) between the limits cos(ϑmin) and cos(ϑmax).
If the minimum and maximum value of a range coincide, the corresponding starting value
is fixed.
Remark: The momentum is either the transverse, or the absolute momentum, depending
on the flag “Use absolute momentum” (see below).

15

4.3 Control flags

The flags are used for steering the program and selecting simulation and reconstruction
features. There are two groups of flags, one group of flags each to influence the simulation
and the reconstruction. In the Octave version a flag is enabled if the value behind the
semicolon is 1, and disabled, if the value is 0.

• Symmetry in theta: If this flag is set, the ϑ-range of the track is mirrored at the plane
z = 0. Both ϑ-limits must be larger or smaller than π/2, respectively, that means
one obtains two slices of ϑ-ranges. The number of tracks is uniformly distributed in
both slices.

• Use absolute momentum: If “Use absolute momentum” is set the momentum range
mentioned above is treated as range for the absolute momentum. Otherwise the
values are the limits for the transverse momentum.

• Scale down TPC by factor 5: To increase the simulation speed, one can scale down
the TPC using the flag “Scale down TPC by factor 5”. The number of layers in the
TPC is devided by 5, the sigmas are multiplied by

√
5, and the radiation length of

each remaining layer is multiplied by 5. This corresponds to replacing five detector
layers by one layer with statistically corresponding properties.

• Multiple scattering; Measurement errors: Multiple scattering and measurement errors
can be switched off using the corresponding flags, mainly for debugging purposes.

• Display bad tracks: The flag “Display bad tracks” forces the program to write infor-
mation about badly reconstructed tracks to the log file.

• Chi2: The computation of the test quantity χ2 can be disabled separately using the
flag “Chi2” since it is a rather time consuming part of the fit procedure. If enabled,
the average number of degrees of freedom, the mean value of the χ2 and the ratio of
both numbers are written into the log file.

16

5 Running a simulation

Having set up the detector arrangement and defined the start parameters, one can run the
simulation in the MatLab version by clicking the button “Run simulation” in the main
window’s simulation section (see figure 8). In the Octave version, a simulation run is
started by typing LDT run in the Octave shell.
Then, the following steps are carried out:

• The selected input sheets are read out and the internal detector model is set up.

• The start parameters and flags are read.

• Event loop

– The vertex is chosen randomly within the given limits.

– Track loop

∗ The start parameters are chosen randomly within the given limits.

∗ The simulation of the track going through the detector is carried out, yield-
ing the measured space points.

∗ The reference track is computed. This track is used as expansion point for
the Kalman filter.

∗ The track is reconstructed, yielding the fitted track parameters at the inner
side of the innermost cylinder layer.

∗ Test quantities are calculated.

∗ The results are stored.

– The results of all tracks of one event are stored.

• The results of all events are stored.

• The residuals and impact parameters are computed and written to the log file.

• All results are saved to the binary file results.mat to be available later on.

At any time, the simulation run can be aborted by clicking the button “Interrupt” in
the MatLab version. This forces the program to stop the run after the current track and
drop all up to now stored results. In the Octave version, the key combination Ctrl+c

has the same effect.
While running the MatLab version, the elapsed event number and track number is dis-

played in the main window’s section “Messages”. Figure 10 shows this section during a
simulation run. Up, one can see which track is beeing processed. Down, printed in red, the
program shows a warning because of a badly reconstructed track. The standardized resid-
uals (the so called “MC pulls”) and the start parameters of this very track are displayed.
These warnings are enabled by setting the flag “Display bad tracks” in the window “Edit

17

Figure 10: The section “Messages”

simulation parameters” (see figure 9).
In the Octave version, the simulation progress and possible warnings are displayed in the
shell.

Having finished a simulation run, the message “Simulation successfully finished” appears
and the results are written to a so called “results file”. Per default, all results of a simulation
run are written to a results file named results.mat. All output routines access a results
file, e.g. to create histograms from the reconstructed track parameters. A more detailed
explaination of the contents of the results file can be found in section 8.2. After each
simulation run, results.mat is overwritten by the results of the new run.

Results files in MatLab : To have access to the results of a past run, one can save the
results file by clicking “Save results” in the lower part of the “Messages” section. A file
dialog will appear asking you for a filename. A copy of results.mat is generated under
the quoted filename.
The current results file’s name is displayed right above the buttons “Save results” and
“Load results”. When generating an output, the results file quoted here will be accessed.
After saving a results file, the filename here is changed from results.mat to the filename
of the saved results file, and all output routines will acces the new results file.
By clicking the button “Load results” an existing results file can be loaded. A file dialog
appears asking you to choose a results file. Again, the current results file is changed to the
selected one.

Results files in Octave : To have access to the results of a past run, one can save the
results file by typing LDT save(’filename.mat’). A copy of results.mat is generated
under the quoted filename. Don’t forget to specify the extension .mat as well!

18

The output routines in Octave can be called with or without an input parameter. For
example, the command LDT residuals will make use of the results stored in the default re-
sults file results.mat, whereas calling this output routine like LDT residuals(’filename.mat’)

will use the results file filename.mat.

As already said, the results of a simulation run are used to generate different outputs
from. These outputs are explained in section 6.

19

6 Description of the output

Outputs in MatLab : In the lower middle region of the main window one finds the
section “Outputs” (see figure 11). Here, one can view the results of the simulation run and
create outputs from the reconstructed tracks.

Figure 11: The section “Outputs”

With exception of “View log file”, selecting any of the outputs here calls a subroutine,
which accesses the current results file displayed in the section “Messages” (see figure 10).
In the following, each one of the outputs seen in figure 11 is explained. The selection
“Curves” will be explained in section 7.

Outputs in Octave : The Octave version of LDT can generate the same outputs as
the MatLab version. The corresponding commands are:

• edit LDT.log

• LDT pulls

• LDT residuals

• LDT impacts

• LDT curves

• LDT2rave

• LDT2jas3

The output routines in Octave can be called with or without an input parameter. For
example, the command LDT residuals will make use of the results stored in the default re-
sults file results.mat, whereas calling this output routine like LDT residuals(’filename.mat’)

will use the results file filename.mat.

20

6.1 The log file

By selecting “View log file” in the MatLab version or by typing edit LDT.log under
Octave , the file LDT.log is opened in the default text editor. It contains useful informa-
tion about the latest simulation run. A sample log file can be found below:

Action: run simulation

Bad Track 72 Event 10

MCpull = -0.00 3.16 1.02 -0.14 0.51

Start params: -1.1764 -8.5039 2.0865 0.0009 0.0001

Bad Track 95 Event 10

MCpull = -0.88 -3.61 -2.88 0.88 -0.14

Start params: 2.6582 33.1675 0.4247 -0.0007 -0.0001

------------------- SIMULATION PARAMETERS -------------------

Pt:[Gev] [1.0000 100.0000]

phi:[deg] [0.0000 360.0000]

Theta:[deg] [6.0000 174.0000]

x:[mm] [-0.0000 0.0000]

y:[mm] [-0.0000 0.0000]

z:[mm] [-0.0000 0.0000]

Magnetic Field Bz: 3.5000 [T]

Mass of the particles 0.1050 [GeV]

(plays only a role in multiple scattering =>

zero mass means all particles are treated relativisticly!)

Flags:

Symmetry in Theta : off

Use absolute momentum : off

Scale down TPC by factor 5: on

Multiple scattering : on

Measurement errors : on

Display bad tracks : on

Chi2 : on

Barrel geometry: geom/LDCPrime_02Sc_11.04.08.bgeom

Forward geometry: geom/LDCPrime_02Sc_11.04.08.fgeom

Number of events: 10

Number of tracks/event: 100

barrel region: 800

forward region: 6

rear region: 0

intermediate region: 194

------------------------- RESULTS --------------------------

1000 out of 1000 tracks are used for test statistics

Pulls greater than 3 are considered bad

Bad pulls:

4 3 3 2 5

Total number of bad tracks:

14

Standardized residuals

Phi z theta beta kappa

21

mean: 0.013977 0.042478 0.0015655 -0.004582 -0.0058704

std: 1.0065 1.0278 0.99438 1.0026 1.0179

Pulls of innermost hit

Barrel tracks Fwd/Rear tracks -----Intermediate tracks-----

RPhi z u v RPhi z u v

mean: +0.00 -0.05 +0.05 +0.93 -0.02 +0.07 -0.05 -0.01

std: +1.01 +1.02 +0.87 +1.02 +1.08 +1.00 +0.80 +0.93

R.M.S. values of the residuals and momenta [mu] and [mrad] resp.

RPhi z theta phi dpt/pt dpt/pt^2

4.14593 10.44711 0.06764 0.11345 0.00800 0.00025

Impact paramters [mu]

2d 3d (abs)

mean: -0.0182 5.0237

std: 5.2248 4.6466

Chi^2

ndf: 86.774, average

mean: 86.6087

ratio: 1.001909

Mean of the MC-Chi^2 at the beamtube:

5.155256

Simulation successfully finished!

If the flag “Display bad track” is enabled, the first entries in the log file contain the event
number and the track number of badly reconstructed tracks as well as their Monte-Carlo
pulls (standardized residuals) and their start parameters. In the sample log file quoted
here not all bad tracks are listed due to lack of space. The log file printed by the program
of course contains all bad tracks.

The bad tracks are followed by the log file’s proper header. It contains the simulation
parameters, the magnetic field, the mass of the particles, the status of the flags and the
selected input sheets.

The header is followed by a little track statistic. It contains the number of tracks and
events simulated and the number of tracks gone through the forward, intermediate, barrel
and rear region of the detector.

The main part of the log file contains the results of the simulation run, namely the test
quantities and the residuals. This part of the log file is again opened by a statistic, con-
taining the number of tracks that could be used for test statistics. If due to inefficiencies
or geometric reasons some tracks did not yield enough measurements to be reconstructed
properly, those tracks are ignored when computing test quantities and residuals.
If the flag “Display bad track” is enabled, the statistic of bad tracks is printed. This
statistic contains the number of bad estimates for each track parameter seperately, i.e.
[Φ, z, ϑ, β = ϕ− Φ, κ = ±1/RH], as well as the total number of bad tracks.

22

The next section of the log file contains the standardized residuals (the “MC pulls”) and
the pull quantities. The standardized residuals are computed from the simulated start pa-
rameters (Monte-Carlo truth) and the fitted parameters at the end of the Kalman filter for
every track parameter. Their mean value should be compatible with 0 and their standard
deviation should be compatible with 1.
The pulls of the innermost hit of every track are computed from the simulated measure-
ments and the fitted track at that point. Again, the mean value should be compatible
with 0 and the standard deviation with 1. If the innermost hit is in a cylinder layer, the
measurements are RΦ and the second coordinate (e.g. z), otherwise the measurements are
u and v. The pulls are computed seperately for barrel tracks, forward/rear tracks, and for
intermediate tracks. In case of intermediate tracks, the two cases (innermost hit = barrel
layer; innermost hit = forward layer) are declared seperately.

The next part of the log file contains the main output of the program, the residuals and
the impact parameters. The values printed here are the root mean square values of the
residuals of RΦ, z, ϑ, and ϕ, as well as the root mean square values of ∆pt

pt
and ∆pt

p2t
= ∆ 1

pt
.

The next section contains the mean values and the standard deviations of the projected
impact parameters and of the impact parameters in space.

If the computation of χ2 is enabled, the mean value and the average number of degrees
of freedom of the total χ2 is written to the log file. The mean value should be compatible
with the average number of degrees of freedom, and so the quoted ratio should be around
1. In addition to that, the mean value of the χ2 at the beamtube (computed from the start
parameters, the fitted parameters and the covariance matrix at the beamtube) is printed.
This value should be compatible with 5, the number of track parameters.

6.2 Histograms of pull quantities and standardized residuals

By selecting “Pulls histograms” in the “Outputs” section of the main window (typing
LDT pulls under Octave), the pull quantities and the standardized residuals are dis-
played in histograms, as shown in figure 12. The histograms in the top row show the
distribution of the pulls of the innermost hits, barrel representation left and forward repre-
sentation right. The bottom row shows the histograms of the standardized residuals, one
histogram for each track parameter. The mean values are plotted as green lines and the
standard deviations as red lines. In addition, these values are printed on top of the the
corresponding histogram.

6.3 Histograms of the residuals with respect to the true track
parameters

Selecting “Residuals histograms” in the “Outputs” section of the main window (typing
LDT residuals under Octave) opens the main output of the program (see figure 13).

23

Figure 12: Histograms of pulls and standardized residuals.

The residuals of the fitted state vectors are displayed in form of histograms, together with
the corresponding root mean square value. The root mean square of the deviation from
the Monte Carlo truth serves as a measure for the detector resolution. The program draws
histograms of the residuals of RΦ, ϕ, z, ϑ, and of ∆pt/pt and ∆pt/p

2
t . The root mean

square is illustrated by red lines.
The four histograms in the upper half of the window display the residuals of RΦ, ϕ, z and

ϑ. For better readability, the displayed RMS values of RΦ and z are shown in micrometers,
and the displayed RMS values of ϕ and ϑ are shown in milliradians. The histograms in
the lower half display ∆pt

pt
(dimensionless) and ∆pt

p2t
(in units of c/GeV).

The relative deviation ∆pt
pt

can be parametrized in the following way [1]:(
∆pt

pt

)2

= c1p
2
t + c2

√
1 +m2/p2,

where the first term is due to the detector resolution and the second term takes into account
multiple scattering. Neglecting m2/p2and dividing by pt yields.

∆pt

p2
t

=
√
c1 + c2/p2

t .

For increasing pt,
∆pt
p2t

is therefore nearly independent of pt, and for this reason its root

mean square value is often used for comparisons of different detector setups.

24

Figure 13: Residuals histograms (difference of reconstructed and simulated track parameters).

6.4 Impact parameters

By selecting “Impacts histograms” in the “Outputs” section of the main window (or by
typing LDT impacts under Octave), the program displays the projected (transverse)
impact parameters and the impact parameters in space in form of histograms (see figure
14). The corresponding mean values and standard deviations are displayed as well.

6.5 RAVE file

The program is able to produce input for a subsequent vertex fit, using the VERTIGO
framework and RAVE vertex reconstruction toolkit [8].

MatLab : By selecting “RAVE file” a file dialog is asking you for the name of the file
to be written. The routine uses the results stored in the current results file.

Octave : The routine LDT2rave can be called with either one or two input parameters.
The call LDT2rave(’filename.txt’) will use the results stored in the default results file
results.mat and write it to the file specified by the given filename, whereas calling it
like LDT2rave(’filename.txt’,’myresultsfile.mat’) will use the results stored in the
results file myresultsfile.mat.

25

Figure 14: Histograms of the impact parameters.

As demanded by RAVE, the reconstructed track parameters and their covariances are
first converted to a Cartesian 6D representation (with a 6 × 6 covariance matrix of rank
5) and then written as text in the VERTIGO Data Harvester’s CSV (comma separated
variables) format.

6.6 JAS3 file

For doing further studies with the reconstructed and simulated tracks, the program can
write a simple text file for a special Java program embedded in the JAS3 analysis tool [9].

MatLab : By selecting “JAS3 file” a file dialog is asking you for the name of the file to
be written. The routine uses the results stored in the current results file.

Octave : The routine LDT2jas3 can be called with either one or two input parameters.
The call LDT2jas3(’filename.txt’) will use the results stored in the default results file
results.mat and write it to the file specified by the given filename, whereas calling it
like LDT2jas3(’filename.txt’,’myresultsfile.mat’) will use the results stored in the
results file myresultsfile.mat.

Then, the program collects the demanded data and writes the output.

26

7 Calculating and displaying curves

In the section “Start parameter range” (section 4.2) was explained how to define the phase
space of possible start parameters and the number of events and tracks. Having carried
out a simulation run, one obtains rms-values of the deviations of the track parameters from
the Monte Carlo truth, as well as the impact parameters (projected and in space), and the
relative momentum resolution values ∆pt

pt
and ∆pt

p2t
= ∆ 1

pt
. Now one will probably want to

know, how these values change in dependence on e.g. the momentum, or, how they change
when using different detector setups.

7.1 Curves with different start parameters

The program is able to carry out a sequence of simulation runs with different start pa-
rameters, using a “hidden” feature in the input of the start parameters. Instead of defin-
ing one pair of minimum and maximum values, you simply put in more pairs of mini-
mum and maximum values. In the MatLab version this is done in the window “Edit
simulation parameters”, while in the Octave version one uses the main steering file
simulation paramters Octave.txt. In the following, only the input within the Mat-
Lab version is shown, the corresponding input in the Octave version looks the same.

Example: If you want to determine the detector performance for the momenta of 1, 5,
10, 20 and 50 GeV/c, simply put these values in the corresponding input lines of minimum
and maximum momentum, in the window “Edit simulation parameters” (see figure 15).
The first value of these lines defines the momentum range of the first point of the curve,
the second one defines the range of the second point, etc.
Just like before, if you want to simulate the points with a momentum range rather than
with fixed values for the momentum, you simply put in different values for the minimum
and maximum value of pt. An example for this is shown in figure 16.

Figure 15: Curve with fixed values of pt Figure 16: Curve with ranges of pt

Having carried out the simulation runs, the program opens two figure windows. One
displays the rms values of the deviations from the Monte Carlo truth of RΦ, z, ϑ and ϕ
in dependence on pt. The other one shows the standard deviation of the projected impact
parameter, the mean value of the impact parameter in space and the root mean square
values of the relative momentum resolution values ∆pt

pt
and ∆pt

p2t
.

27

As an example, the rms value of ∆pt

p2t
in dependence on pt can be seen in figure 17. The

curves in dependence on pt are plotted in logarithmic scale.

Figure 17: Example: rms
(

∆pt

p2t

)
in dependence on pt

You can compute multiple curves at once, for example with different values of ϑ. To do
this, just put in multiple pairs of minimum and maximum values of ϑ as start parameters
(see figure 18). Having carried out the simulation for the first range of ϑ and all ranges of
pt, the program continues the calculation with the next ϑ range and the first pt range.
Now, in the output plots, more curves will appear, displaying the results for the different
ϑ ranges (see figure 19).

Figure 18: Input of curves with different ϑ
ranges

Figure 19: Curves with different ϑ ranges

If you want to determine the detector’s behaviour in dependence on ϑ for a fixed value
of pt, just do the whole thing the other way ’round. Put in more pairs of minimum and
maximum values for ϑ and only one pair of values for pt. Again, you can compute curves
for different values of pt, too (see figure 20).

28

If there are more value pairs for ϑ than for pt, the program plots curves for the different
values of pt in dependence on ϑ. That means, ϑ instead of pt occurs in the ordinate and
the plot will be a linear one rather than a logarithmic one (see figure 21). As long as there
are at least as many value pairs for pt as for ϑ, the plot will be in dependence on pt.

Figure 20: Input of curves dependent on ϑ

Figure 21: Curves dependent on ϑ

Similar to the normal case, the different ϑ ranges are plotted as red lines in the 2D
detector display, as can be seen in figure 22.

Figure 22: Different ϑ ranges in the detector display

When running a normal simulation run, without calculating curves, the program writes
information and results of that run to the log file “LDT.log”. In case of curves, this log file
contains the corresponding information of each single run. Thus, one can look up e.g. the
values of the test quantities of every calculated point. The single runs can be identified by
the information in the header of the log file.

Like in the normal case, the results of the repeated simulation run are written to the
results file (see section 5). But since the default results file results.mat is overwritten
each time a new simulation run is carried out, only the detailed information of the last
run is available for generating histograms or other outputs from. Since the interesting

29

values obtained from a curve run are the rms values of the track parameters, the impact
parameters and the momentum resolutions, those values are collected in each run and
written to the results file. When saving the results after a curve run, on can recall the
plots of the curves by loading the corresponding results file and clicking “Curves” in the
main window’s “Output” section.

7.2 Curves with different detector setups

In literature, one often finds plots showing e.g. the relative momentum resolution σ
(

∆pt
p2t

)
in dependence on the transverse momentum pt for different detector setups. Such plots
allow to resolve the effect of changing e.g. some geometric parameters for a wide range of
momentum.
LDT is able to produce such plots in a very easy way, similar to what was explained in the
previous section.

MatLab : In the main window’s section “Detector geometry” one can define a so called
“geometry list” of barrel and forward input sheets, each, which are processed in sequence.
To establish such a list, one has to use the selections “Add barrel (forward) geometry to
list” and “Remove barrel (forward) geometry from list” in the corresponding pull down
menus.

For normal applications, said list of input sheets only consists of one single input sheet,
namely the one selected by “Select barrel (forward) geometry”. Selecting “Add barrel
(forward) geometry to list” now has the effect of extending this list by an additional input
sheet. This input sheet is selected by a habitual file dialog window. This can be seen in
figure 23.

Figure 23: Adding a barrel input sheet to the list

30

Beyond the pull down menu, where the selected input sheet’s name is displayed, the name
of the new input sheet is added, as can be seen in figure 24.

Figure 24: Adding a barrel input sheet to the list

Repeating this process, one can establish a list of any number of input sheets. Note, that
although the main window only offers space enough to display the names of 5 input sheets,
the list can contain more.
Of course, the lists of barrel and forward input sheets have to contain the same number
of corresponding input sheets. Selecting “Remove barrel (forward) geometry from list”
deletes the last entry in the list. An example of correctly set up geometry lists is shown in
figure 25. As one can see, it’s possible to add the same input sheet multiple times to the
list.

Figure 25: Example for geometry lists

Using the shown example geometry lists, evaluation at pt = 100 [GeV/c] and ϑ = 90

31

[deg] (as shown in figure 26) would result in three simulation runs in sequence, the first
with the first input sheet of the barrel geometry list and the first input sheet of the forward
geometry list. After the first run, the program continues with the second input sheets on
the lists, and so on. Having finished the three runs, it opens the same two figure windows

as before, see the example of rms
(

∆pt
p2t

)
in figure 27.

Figure 26: Sample start parameters (only one
point per detector setup)

Figure 27: Results of a simulation run with
different input sheets

The three plotted points show the result of the simulation runs for the different input
sheets. From the legend beyond the plot one can tell, which point belongs to which input
sheets. Due to space saving reasons, the extensions of the input sheets, .bgeom and .fgeom

are abbreviated with .b and .f.

Octave : Under Octave , setting up geometry lists is done in the main steering file
simulation parameters Octave.txt. As explained in section 3, the first two lines of the
steering file contain the selected input sheets for the barrel region and the forward region.
A geometry list can easily be established by adding more input sheets in the corresponding
lines, seperated by commas. The Octave geometry list and start parameters correspond-
ing to figure 25 and 26 can be found in figure 28.

Using the shown example geometry lists, evaluation at pt = 100 [GeV/c] and ϑ = 90 [deg]
(as shown in figure 28) would result in three simulation runs in sequence, the first with
the first input sheet of the barrel geometry list and the first input sheet of the forward
geometry list. After the first run, the program continues with the second input sheets on
the lists, and so on. Having finished the three runs, it opens the same two figure windows

as before, see the example of rms
(

∆pt
p2t

)
in figure 29.

Since Octave is not able to display multilined legend entries, the legend doesn’t look as
nice as in MatLab . To identify the points, one has to have a look at the main steering
file. Point 1 corresponds to the first pair of input sheets, point 2 to the second, etc.

32

Figure 28: Example for geometry lists in Octave

Figure 29: Results of a simulation run with different input sheets in Octave

33

In the previous example we resolved the difference between the three detector setups at
only one point in the phase space of possible start parameters, we used only pt = 100
[GeV/c] and ϑ = 90 [deg]. Similar to what was presented in the previous section, we can
do the comparison of the detector setups for different momenta and polar angles, too. A
sample input of start parameters is shown in figure 30 and figure 32, the result of the
simulation can be seen in figure 31 and 33.

Figure 30: Sample start parameters (5 different
momenta per detector setup)

Figure 31: Results of a simulation run with
different input sheets, in dependence on pt

Figure 32: Sample start parameters (5 different
polar angles per detector setup)

Figure 33: Results of a simulation run with
different input sheets, in dependence on ϑ

Now, the programs executes several simulation runs using the same input sheets, for
the different values of pt and ϑ, respectively. Having processed the runs for one detector
geometry, it loads the next one and calculates the same points with the new geometry.
Therefore, in the plot now appear three curves representing the detector behaviour of the
different setups in dependence on pt and ϑ, respectively.

34

When computing curves, the program plots e.g. the relative momentum resolution in
dependence on two parameters. As long as you use only one barrel input sheet and one
forward input sheet (and no further entries in the geometry list), these parameters can be
the momentum and the polar angle. As seen in section 7.1, the plot will be in dependence
on the quantity with more start parameters, while the other one is used to identify the
different curves.

When a geometry list of more than one input sheets is defined, this list is treated with
priority. That means, that the different input sheets are used to define the different curves,
while the plot is done in dependence on one of the other quantities. So you cannot compare
different detector setups depending on the momentum and the polar angle at the same time.
But as shown at the beginning of section 7.2, if the program is assigned to calculate curves
using different input sheets with the same start parameters (only one momentum and one
polar angle), the plot will be dependent on the input sheets. This avoids getting a plot
with single points, one above the other, at the same momentum or polar angle.

If for both the momentum and the polar angle multiple start values are defined, the
simulations will be done depending on the quantity with more entries. In this case, the
first entry of the other quantity will be used, the further ones will be ignored. Again, if
the two quantities have the same number of entries, pt will be used rather than ϑ.

35

8 Additional features

In this section some features are listed that are not enabled by default. All these features
are thought for people who know what they are doing, i.e. knowledge of the MatLab -
programing language is required to use this features.

8.1 Some key variables

When it comes to length units, the program internally uses [mm]. This can be changed by
changing the variable unit in the file LDT Matlab.m or LDT Octave.m, respectively. unit

holds the internally used length unit in units of [mm]. That means, for computation in
[mm] unit holds the value 1. For [cm], it holds 10, for [m] it holds 1000. Since unit

is defined to be a global variable, the whole simulation process and all subroutines have
access to it and rescale all affected values automatically.

In the new version of the program a lower limit for the transverse momentum has been
implemented. By default it is set to 0.5GeV . The limit is hard coded in LDT run.m, if one
wants an other value, the variable pt limit has to be changed.
Note: The limit for the transverse momentum only applies if the flag for the use of the
absolute momentum is set.

The subroutine LDT display2D.m displays the detector arrangement by default includ-
ing the names of the detectors and the values of the limiting angles, which devide the ϑ
range in forward, intermediate, barrel and rear region. One can disable these text outputs
in the sketch by setting the variables drawtheta and drawnames to 0 at the beginning of
the code of LDT display2D.m.
Since a TPC usually consists of a high number of layers, the program by default only
displays every tenth layer of the TPC. To have every layer be displayed, set the variable
drawwholeTPC to 1. If “Scale down TPC by factor 5” is selected, every layer is displayed
by default.

It is possible to simulate one single track several times with a different sequence of random
numbers. This is realized by moving the start of the track loop (for ITrack=1:N.Track)
after the point where the start parameters for the track are generated. An appropriate
section in the source code is commented out.
One can influence the initial state of the random generators by changing the variable
runnumber in the main program LDT run.m. For reasons of simplicity, the run number is
restricted to integer values >0.

The variable minmeas defines the minimum number of measurements per coordinate. By
default it is set to 3 in the main program (LDT run.m). If a track has less measurements
of one or both coordinates, it is not considered in computing pull quantities and residuals.

36

8.2 The results file

At several points in this manual the results file was mentioned, which contains the collected
results of a simulation run. Since there is no physical difference between the tracks of dif-
ferent events, the tracks from all events are gathered together. That means, a simulation
of 10 events with 100 tracks each results in a collection of 1000 tracks. In the following,
the “number of tracks” Ntracks is understood the number of events times the number of
tracks per event of the considered simulation run.
The results file is a MatLab workspace file, with help of which variables used in the pro-
gram can be stored. The variables stored in results.mat are loaded to the workspace
using the command load results, and can afterwards be viewed and manipulated by
normal MatLab commands.

The most important variables of the results file are:

• Aparam start [Ntracks × 5 double]: The start parameters of each track, defined at
the inner side of the innermost cylinder layer. The track parameters are [Φ, z, ϑ, β(=
ϕ−Φ), κsigned]. Angles are measured in [Rad], lengths are measured in the currently
used length unit [unit] (see above).

• Avertex [Nevents × 3 double]: The space point where the tracks of each event came
from, in cartesian coordinates x, y and z, in [unit].

• Aparam fit [Ntracks × 5 double]: The fitted track parameters of each track, defined
at the inner side of the innermost cylinder layer.

• ACf store [Ntracks×5×5 double]: The 5×5 covariance matrix of each track, defined
at the inner side of the innermost cylinder layer.

• Ameas [Ntracks×maximum number of traversed detectors, double]: Information about
how many coordinates have been measured by a layer, for every track. 0 means
no measurement, 1 means first coordinate measured, 2 means second coordinate
measured, 3 means both coordinated measured.

• Ahitpattern [Ntracks× maximum number of traversed detectors, cell]: The layer
names of traversed layers for each track. Together with Ameas one can look up which
detector measured which coordinate.

• Apull [Ntracks × 2 double]: The real pull quantities at the first nonpassive layer, for
every track and the two coordinates.

• AMC pull [Ntracks × 5 double]: The Monte-Carlo pull quantites (the standardized
residuals) at the innermost cylinder layer, for every track and the five track param-
eters.

37

• AMC res [Ntracks × 5 double]: The deviations of the reconstructed track parameters
from the Monte-Carlo truth (Aparam start) at the innermost cylinder layer.

• AMCpullhit [1 × Ntracks logical array]: Indicates the tracks, that could be used for
computation of pull quantities and residuals. Tracks indicated with 1 could be used,
those with 0 were rejected.

• chi2 [Ntracks× 1 double]: The total (accumulated) χ2 test quantity at the innermost
cylinder layer, for every track indicated to be useful by AMCpullhit.

• ndf [Ntracks × 1 double]: The number of degrees of freedom, with which the total χ2

test quantity at the innermost cylinder layer should be compatible, for every track
indicated to be useful by AMCpullhit.

• nameb, namef: These variables are cell arrays containing the name(s) of the used
barrel and forward input sheets.

• resultsofcurves [8×Ncurves×Npoints]: This is the array where the results of a curve
run are stored. The dimension depends on the number of curves and the number
of points per curve, as determined by the geometry lists and the number of start
parameters. In resultsofcurves the rms values of the residuals (the deviations of
the reconstructed track parameters from the MC truth), the impact parameters and
the rms values of the relative momentum resolutions are stored:

– resultsofcurves(1, :, :): rms value of ∆RΦ

– resultsofcurves(2, :, :): rms value of ∆z

– resultsofcurves(3, :, :): rms value of ∆ϑ

– resultsofcurves(4, :, :): rms value of ∆ϕ

– resultsofcurves(5, :, :): rms value of ∆pt
pt

– resultsofcurves(6, :, :): rms value of ∆pt
pt2

– resultsofcurves(7, :, :): standard deviation of projected impact parameters

– resultsofcurves(8, :, :): mean value of impact parameters in space

38

Acknowledgements

The “LDT” software was designed and developed in the Vienna ILC Project Group.
Thanks are due to R. Höfler for valuable contributions. Efficient helix tracking was actively
supported by W. Mitaroff (HEPHY Vienna), who also contributed to this manuscript. The
corresponding author is M. Valentan.

Please send bug reports to valentan@hephy.oeaw.ac.at.

References

[1] R. Frühwirth et al.: Data Analysis Techniques for High-Energy-Physics , 2nd edition
(eds. M. Regler and R. Frühwirth), Cambridge University Press (2000).

[2] M. Regler, R. Frühwirth and W. Mitaroff: Int.J.Mod.Phys. C7, 4 (1996) 521.

R. Frühwirth et al.: Nucl.Instr. Meth. A 334 (1993) 528.

[3] D. Hanselmann and B. Littlefield: Mastering MatLab 7 , Pearson Prentice-Hall (2005).

See also http://www.mathworks.com/.

[4] Octave on the web: http://www.gnu.org/software/octave/

[5] M. Regler, M. Valentan and R. Frühwirth: The LiC Detector Toy Program, Proc. 11th

Vienna Conf. on Instrumentation (VCI) 2007, Nucl.Instr.Meth. A 581 (2007) 553.

[6] W. Mitaroff, M. Regler, M. Valentan and R. Höfler: Track Resolution Studies with
the “LiC Detector Toy” Monte Carlo Tool, Proc. 10th Int. Linear Collider Workshop
(LCWS) 2007, DESY Hamburg (to be published).

M. Regler, W. Mitaroff, M. Valentan, R. Frühwirth and R. Höfler: The “LiC Detector
Toy” Program, Proc. Int. Conf. on Computing in High Energy and Nuclear Physics
(CHEP) 2007, Victoria, Canada (to be published).

[7] M. Leitgab and M. Regler: Study of the effects of higher beam luminosities on the
impact parameter resolution of the 2006 BELLE Inner Tracker using the LiC Detector
Toy, HEPHY Lab Report “Projektarbeit Hochenergiephysik” part 2, Vienna 2007.

[8] W. Waltenberger, F. Moser and W. Mitaroff: RAVE – a detector-indepenent ver-
tex reconstruction toolkit , Proc. 11th Vienna Conf. on Instrumentation (VCI) 2007,
Nucl.Instr.Meth. A 581 (2007) 549.

[9] Java Analysis Studio (JAS3): http://jas.freehep.org/

W. Mitaroff: private communication.

39

Appendix: The global coordinate system

The detector setup is assumed to be rotational symmetric w.r.t. the z-axis, but not nec-
essarily mirror symmetric w.r.t. the origin z = 0. The axes (x, y, z) define a right-handed
orthogonal basis. By convention, the x-axis is chosen to be horizontal w.r.t. the ground,
and the y-axis to point upwards.

Surfaces are either cylinders of radius R and borders zlower ≤ z ≤ zupper (“barrel region”),
or planes normal to the z-axis with circular borders Rinner ≤ R ≤ Router (“forward and
rear regions”). They may be real or virtual.

Besides Cartesian coordinates, cylinder coordinates and spherical polar coordinates are
defined for space points and/or momenta:

Space points ~x = [x, y, z]cart = [R,Φ, z]cyl

x = R · cosΦ R =
√
x2 + y2

y = R · sinΦ Φ = arctan(y/x), azimuth angle 0 ≤ Φ < 2π

Momenta ~p = [px, py, pz]cart = [P, ϑ, ϕ]sph = [pT , ϕ, pz]cyl

px = P · sinϑ · cosϕ P =
√
p2
x + p2

y + p2
z =

√
p2
T + p2

z

py = P · sinϑ · sinϕ ϑ = arccos(pz/P), polar angle 0 ≤ ϑ ≤ π

pT = P · sinϑ λ ≡ π
2
− ϑ, dip angle π

2
≥ λ ≥ −π

2

pz = P · cosϑ ϕ = arctan(py/px), azimuth angle 0 ≤ ϕ < 2π
The magnetic field is assumed to be homogeneous and aligned parallel or anti-parallel

to the z-axis. It is defined by the flux density ~B = [0, 0, Bz]cart. This implies a helix track
model, with the helix axis being parallel to z.

The following units are used: [length] = mm, [angle] = rad, [momentum] = GeV/c,
[B field] = T (Tesla), and [charge] = e (elementary charge). For a particle with momentum
P and charge Q, the radius of the helix and its signed inverse are

rH = 1
Kmm

· P · sinϑ| Q ·Bz |
κ = −sign(Q ·Bz) · 1

rH

with the unit-dependent constant Kmm = 10−15 c = 0.00029979... GeV/c
T·mm

. Our sign conven-

tion corresponds to sign(κ) = sign(dϕ
ds

) ≡ sense of rotation in (x, y)-projection. Note that
in the absence of matter, P and ϑ are constants of motion.

The helix equations for a starting point [xS, yS, zS] and a starting azimuthal direction
angle ϕS, as functions of the running parameter ϕ, are:

x(ϕ) = xS + 1
κ
· (sinϕ− sinϕS)

y(ϕ) = yS − 1
κ
· (cosϕ− cosϕS)

z(ϕ) = zS + 1
κ
· cotϑ · (ϕ− ϕS) path length s(ϕ) = 1

κ
· (ϕ− ϕS)/sinϑ

The track parameters are defined as follows:

[Φ, z, ϑ, β = ϕ− Φ, κ] at R = RS LDT “barrel region”

[x, y, ϑ, ϕ, κ] at z = zS LDT “forward/rear region”

[x
10
, y

10
, z

10
; px, py, pz] RAVE “6D Cartesian” (unit length = cm)

40

	Introduction
	Getting started
	Setting up the detector model
	Input of barrel region, magnetic field and vertex position
	Example barrel input sheet: Silicon Inner Tracker
	Magnetic field and beam spot

	Input of forward region
	Example forward input sheet

	Input of simulation parameters
	General parameters:
	Start parameters
	Control flags

	Running a simulation
	Description of the output
	The log file
	Histograms of pull quantities and standardized residuals
	Histograms of the residuals with respect to the true track parameters
	Impact parameters
	RAVE file
	JAS3 file

	Calculating and displaying curves
	Curves with different start parameters
	Curves with different detector setups

	Additional features
	Some key variables
	The results file

	Acknowledgements
	References
	Appendix: The global coordinate system

