Status on SDT simulation work

10/19/2020

Contents

A first trial to see what happen for the |P resolution
from the CEPCSW

* A simple circle fitting to X-Y plane of the hits are used,
after some investigations.

« #Although | have separately started to test with the latest
CEPCSW) the results in this slide was obtained from already
existing simulated rootfiles.

« # only DCH hits are used, for confirmation of circle fitting

Confirmation of the CEPCSW circumstance

pion, 1GeV, only hits of DCH1 (for a test)

Fitting to the hits = 1500r
£ i

-- Using MarlinTrk/HelixFit o 10001~

(temporally modified “accordingly”) a [
x |

-- To avoid multi-tracks, cuts on 500
number of hits is applied on the -
events to select single track for fit

(therefore, ~ 1500 ? events of 0
2000events were fitted)

-- the weight is given as arbitrary set —500

values, w=1/c2, where 6=0.2um

(as long as one detector type, it might 1000

be no effect ...) - | | | | |

-- input values are x, y hit positions. Z %T“r-rriff T T M/I/
coordinate is not considered at this ~1900550 —1000 500 0 500 1000 1500
moment (pink is showing hits, where as

X axis [mm
the blue curve is fit result) [mm] -

Fitting to the hits: HelixFit routine

// Created by Steve Aplin on 9/16/11.

// DESY

//

// C++ rewrite of the aleph Fortran routine TFITHL
//

//! Fast helix fit

//

//

// Input: NPT Number of 3-D points to be fit
// xf Array of X-values of points to be fit
// yf Array of Y-values of points to be fit
// zf Array of Z-values of points to be fit
// wf Array of 1/(sig(rphi))**2 for each point
// wzf Array of 1/(sig(z))**2 for each point
// iopt < 3:error matrix calculated

// = 3: 3-dimensional iteration

//

// OUTPUT: w0 = Helix parameter in perigee form

// ee0 = INVERSE OF ERROR MATRIX IN TRIANG. FORM

// chi2ph = CHI SQUARED = SUM (PHI DEVIATIONS/ERRORS)**2
// CH2Z = CHI SQUARED = SUM (Z DEVIATIONS/ERRORS)**2
// NOTE: DEGREES OF FREEDOM = 2*NPT-5

// BASED ON SUBROUTINE CIRCLE

// REFERENCE: COMPUTER PHYSICS COMMUNICATIONS VOL 33,P329
//

// AUTHORS: N. CHERNOV, G. 0OSOSKOV & M. POPPE

// Modified by: Fred Weber, 8 Jun 1989

// Modified by: M.Cattaneo, 27-Jan-1998

// Protect against arg SIN > 1.0

Computer Physics Communications 33 (1984) 329-333
North-Holland, Amsterdam

329

EFFECTIVE ALGORITHMS FOR CIRCLE FITTING

N.I. CHERNOV, G.A. OSOSKOV

Joint Institute for Nuclear research, Head Post Office, P.O. Box 79, 101000 Moscow, USSR

Received 20 February 1984

After-an investigation of known methods for circle fitting 1wo new effective algorithms are proposed which meet all the

requirements of mass data handling.

1. In many data handling problems there is a
need to approximate data points by a circle. Some
cases (pictures of lunar craters [1], eye cornea
surface [2], etc.) are related to circle-like images,
but more frequently a circular arc is used as an
approximating curve that possesses some ad-
vantages when compared with other curves even
allowing for their simplicity in fitting.

The circle is better for such a prediction than
the parabola, for instance, because the circle re-
tains its curvature. It is necessary to point out the
extremely rigid requirements on the efficiency of
the fitting algorithm in tracking problems. This
follows from the very high rate at which the fitting
procedure is called (= 10° times for each frame,
with 10°-10° frames for one experiment).

//
MarlinTrk/HelixFit.h

Ref:

Let us derive the corresponding formulae which
will be needed later. To simphfy the notation les
ut denote by Gauss brackets expressions like

M
Y xPyt=[x"y?]

i=1

and suppose that the origin of the coordinate
system has been transferred to entre of grav-
ity of the point set (x,, y,); hence [x]=

not sure many parts, such as taking average by
weight (what values should be for the

weights ?)

example

for (inti=0; i<npt; ++i) {
xi = xf[i] - xm;

yi = yf[i] - ym;
XX = Xi*xi;
yy = yi*yi;

x2 = x2 + xx*wf[il;
y2 = y2 + yy*wilil;

xy = xy + xi*yi*wfli];
dd = xx + yy;

xd = xd + xi*dd*wf[il;
yd = yd + yi*dd*wfli];
d2 = d2 + dd*dd*wfli];

=

Fa+Hb—ay="r,
Ha+ Gb—by=Q, 9
2Pa+20b+y =T,
where as above y = R? — g — b, Using again the
Gauss brackets we denote
F=%[3xz+y2], G=%[x2+ 3y2],

_2 _1 2, 2
H—n[xy], —n{x(x +y)]

1 1 2

0= [r(x* 4y T= [+,

In the system (9) one can exclude any pair of
unknown variables to get an equation of the 4th
degree. The most suitable choice is to exclude a, b
and thereby obtain the equation

v 4+ Ay + By P+ Cy+ D=0 (10)

d0 (=for o,) distribution

- Assuming that initial position of the injected particle is the origin = (0.0, 0.0, 0.0) so that
obtained d0 is directly shown without any position subtraction

40

35

30

25

20

15

10

pion, 1GeV

h_ip_res
Entries 1359
Mean -0.02667
Std Dev 0.5069
Underflow 5
Qverflow 4
%2/ ndf 140 /132
Prob 0.3002
Constant 3294 £1.20
Mean —0.02742 £ 0.00852
Sigma 0.2937 + 0.0067

2 3 4 5
[mm]

c=294um

400

350

300

250

200

150

100

50

pion, 100GeV |

h_ip_res
Entries 1562
Mean 0.008728
Std Dev 0.2247
Underflow &
Overflow 0
¥? / ndt G389 /136
Prob 0
Constant 456 + 20.9
Mean —0.0005411 + 0.0005351
Sigma 0.01805 + 0.00051

O | PO

| | | L
-1

-0.5 0

o=16bum

05 1
[mm]

Ref: IP resolution from the LDT

10°

G, [1m]

1 10 10°
P(n) [GeVi/c]

The values in previous page are much worse. Need to
include VTX hits etc. as well as tracking routine

Next steps

« Need further checks (actually going further to have numbers which can
be compared with references...)

e Include VTX (& SIT/SET) hits which are also stored in
the rootfiles

 Momentum resolution
(Pt would be easy, need Z coordinate info. for P ?)

« At the same time, could | ask helps/suggestions about
the tracking available at the CEPCSW 7

An update (just made it,,, need to check again)

-- Add VXD/SIT/SET/DCH2 hits

-- for the weight, w(VXD/SIT/SET) = 1/62, 6=10um, w(DCH1/2) = 1/52, 6=0.2um

-- events are selected as, Nhit(VXD)=6, Nhit(SIT)=4, Nhit(SET)=2, Nhit(DCH1/2) <
120

> ~50% (100GeV) -- 30%? (1GeV) was the efficiency of the events

d0 (=for o,) distribution

h_ip_res

pion, 1GeV

-0.8 -0.6 -04 -0.2 0

h_ip_res

h_ip_res

Qverflow
%2 [ndf

603
-0.02841
0.1327

Underflow 2

4
147 /132
0.1763

Constant 6.404 £ 0.431

—0.03353 = 0.00664
0.1204 £ 0.0076

pion, 100GeV

o=120um

02 04 06 08 1

_III|III|III|III|||H|J|“}|

h_ip_res

I QOvertlow

Entries
Mean
Std Dev

Underflow

¥2 i ndf
Prob
Constant
—0.001016 + 0.000053
0.001562 + 0.000043

Mean

Sigma

-0.1-0.08-0.06-0.04-0.02 0

d =
o
A o
ol

o=1.6um

o
=
o
o
o
[an)

